EXCALIBUR"™

Nios Embedded Processor

Software Development Reference

[ANO[SRYA\,
101 Innovation Drive
San Jose, CA 95134

(408) 544-7000
http://www.altera.com

A-MNL-NIOSPROG-01

Manual
Version 1.1
March 2001


http://www.altera.com

Nios Embedded Processor Software Development Reference Manual

Altera, ACEX, APEX, APEX 20K, FLEX, FLEX 10KE, MAX+PLUS II, MegaCore, MegaWizard, OpenCore, and Quartus are
trademarks and/or service marks of Altera Corporation in the United States and other countries. Altera Corporation
acknowledges the trademarks of other organizations for their respective products or services mentioned in this document,
including the following: Verilog is a registered trademark of Cadence Design Systems, Incorporated. Java is a trademark of Sun
Microsystems Inc. ModelSim is a trademark of Model Technologies. MATLAB is a registered trademark of the MathWorks.
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. Altera products are protected under
numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of
its semiconductor products to current specifications in accordance with Altera’s standard warranty, but reserves
the right to make changes to any products and services at any time without notice. Altera assumes no NSAalI
responsibility or liability arising out of the application or use of any information, product, or service described —_
herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the
latest version of device specifications before relying on any published information and before placing orders for
products or services.

LS. EN ISO 9001

Copyright © 2001 Altera Corporation. All rights reserved.

ii Altera Corporation



About this Manual
A I:l m= =)

Altera Corporation

This document provides information for programmers developing
software for the Nios™ embedded soft core processor. Primary focus is
given to code written in the C programming language; however, several
sections discuss the use of assembly code as well.

The terms Nios processor or Nios embedded processor are used when
referring to the Altera® soft core microprocessor in a general or abstract

context.

The term Nios CPU is used when referring to the specific block of logic, in
whole or part, that implements the Nios processor architecture.

Table 1 below shows the programmer’s reference manual revision history.

Table 1.Revision History

Revision Date Description

Version 1.1 | March 2001 Nios Embedded Processor Software Development

Reference Manual - printed




About this Manual

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at http:/ /www .altera.com.

For additional information about Alter aproducts, consult the sources

shown in Table 2.

Table 2 .How to Contact Altera

Information Type

Access

USA & Canada

All Other Locations

Altera Literature
Services

Electronic mail

lit_req@altera.com (1)

lit_req@altera.com (1)

Non-technical
customer service

Telephone hotline

(800) SOS-EPLD

(408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

Fax

(408) 544-7606

(408) 544-7606

Technical support

Telephone hotline

(800) 800-EPLD

(6:00 a.m. to 6:00 p.m.

Pacific Time)

(408) 544-7000 (1)
(7:30 a.m. to 5:30 p.m.
Pacific Time)

Fax

(408) 544-6401

(408) 544-6401 (1)

Electronic mail

telecom@altera.com

telecom @altera.com

FTP site

ftp.altera.com

ftp.altera.com

General product

Telephone

(408) 544-7104

(408) 544-7104 (1)

information

World-wide web site

http://www.altera.com

http://www.altera.com

Note:

(1)  Youcan also contact your local Altera sales office or sales representative.

Altera Corporation



mailto:lit_req@altera.com
mailto:lit_req@altera.com
mailto:telecom@altera.com
mailto:telecom@altera.com
ftp.altera.com
ftp.altera.com
http://www.altera.com
http://www.altera.com
http://www.altera.com

About this Manual

Typographic
Conventions

The Nios Embedded Processor Programmer’s Reference Manual uses the
typographic conventions shown in Table 3.

Table 3 .Conventions

Visual Cue

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fjyax, \maxplus2 directory, d: drive, chiptrip.gdf file.

Bold italic type

Book titles are shown in bold italic type with initial capital letters. Example:
1999 Device Data Book.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75
(High-Speed Board Design).

Italic type

Internal timing parameters and variables are shown in italic type. Examples: tpj4, n+ 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of Quartus Il and MAX+PLUS I
Help topics are shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX
8000 Device with the BitBlaster™ Download Cable.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal, tdi,
input . Active-low signals are denoted by suffix _n, e.g., reset_n.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c: \max2work\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1.,2.,3.,anda., b, c.,...

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

|| Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.

= The hand points to information that requires special attention.

« The angled arrow indicates you should press the Enter key.

- The feet direct you to more information on a particular topic.

Altera Corporation



About this Manual

oot

Notes:

Vi Altera Corporation



A I]  —_—— A Contents

-
®
How to Contact Altera iv
Typographic CONVENIONS ........c.coiuiiiiiiiiiiieeict e e e \4
Introduction..........cccccvevenuiinnes
Project Considerations ............cccocecveveiiviiinninnnnns
Development FIOW ..o
Step 1: Define the Processor ...
Step 2: Build the Processor ...
Step 3: Save the Processor Configuration to FLASH
Step 4: Create the Application Code.........cccevuiuiuniriiniicnnns
Step 5: Download the Executable Code...
Step 6: Debug the Code........oooiiiiiiiii s
Step 7: Transition to Auto-Booting Code ..o
Step 8: Transition Design From Nios Development Board to Target Hardware ....6
GERMS MOTUEOT ..ottt s st ens e 7
MoOnitor COMMANAS ......oeviiiiiiiiiii i
Boot Process.......c.ccoeveeiuieeninnne
Booting From Flash Memory ...
Overview Of The SDK Tree..............
The Include ("iNe") DIreCtory. ..ot e
The Library ("lib") DIir€Ctory.......ccccoioiviiiiiiniiiiiiiiiic it
Nios Program Structure....................
Nios Library Routines.......
C Runtime Support..........
System-Level SEIVICES ........ccvviiiiiiiiiiiiicc e

Interrupt Service Routine Handler

Current Window Pointer Manager ...
General-Purpose System Routines....
High-Level C Support......ccccooviiiiniicniccnninnns
Nios Peripheral ROUHNES..........ccooiiiiiiiiiiiiiicc s
INTOS PIO .ttt ettt ettt sae e tesaeabaesbeaseaesaesseeesaessee s aesseansessbanneestesnneenseen
Nios SPI
INTOS THITIET ...ttt ettt ettt te e ste e eaeesebe s bbe e saseessbbasbe e sseaensseansseeensnesnnseasne
INTOS UART ...ttt ettt ettt et etae ettt e e s baes e s e esbessaesaeanseessesreeessesrsasaesreannen
Nios Software Development Utilities ....
Appendix A: Command Summary...............
Appendix B: Assembly Language Macros

Altera Corporation vii



Notes:

viii Altera Corporation



A I:l m= A Overview

Introduction

Project
Considerations

Altera Corporation

The Nios embedded processor is a soft core CPU optimized for
programmable logic and system-on-a-programmable-chip (SOPC)
designs. SOPC designs are created using the MegaWizard® Plug-In
Manager included in the Quartus II"™ development software. When the
Nios system builder generates a design, several results occur:

1. The system memory map is checked for consistency. Peripheral
addresses and interrupt priorities are verified to be unique, and fall
within the range of valid entries for the CPU. If not, appropriate
errors are reported and corrections must be made before continuing.

2. A custom software development kit (SDK) is generated for the new
Nios system. The SDK consists of a compiled library of software
routines for the SOPC design, a Makefile for rebuilding the library,
and C header files containing structures for each peripheral.

3. The system hardware is synthesized, placed, routed, and outputin a
file format suitable to configure an Altera programmable logic
device.

This document covers the SDK, generated in step 2 above. All directories
and files mentioned are assumed to be part of the SDK unless otherwise
specified.

Many design scenarios are possible in Nios processor-based systems.
Before beginning development, it is helpful to make some decisions based
on application requirements. The following issues should be considered
before starting the SOPC design:

B Memory Model
Application code can reside in on-chip RAM or ROM or external
memory devices. Applications that require internal memory
resources will typically be limited to <20K of code space.
Consequently, they may require hand-optimized assembly language
to remain small.

External memory allows larger code space at the cost of memory
devices (RAM, ROM, flash, etc.).




Overview

B CPU Footprint
The Nios CPU can be configured with a 32-bit or 16-bit data path. The
16-bit version uses fewer logic elements (LEs), can access a narrower
range of addresses, and runs faster than the 32-bit implementation.

B Software Acceleration
Multiplication-intensive software runs faster when a hardware
multiplier unit is added to the CPU core. Adding a multiplier unit
uses additional LEs.

Development Flow

The following outline describes a typical development flow used when
creating a Nios processor-based design from scratch. It is assumed that
initial development will be accomplished using the development board
and software tools included in the Nios development kit.

Developing applications using the Nios embedded processor is slightly

different than that of traditional processors since the designer is allowed
to configure the processor architecture and specify the peripheral content.
In other words, a designer can build a microcontroller according to system
design requirements, as opposed to selecting a pre-built microcontroller
with a fixed set of peripherals, on-chip memory, and external interfaces.

The Nios development board included in the kit comes with a 32-bit
reference design (processor, on-chip memory with monitor, and
peripherals), and application code pre-loaded in on-board flash memory.
This reference design will help you quickly familiarize yourself with the
development tools prior to starting your custom design (see the Nios
Embedded Processor System Builder Tutorial). If possible, begin your
software design using the Nios development board as your target
hardware platform.

Altera Corporation



Step 1: Define the

Processor

Based on your system needs, decide the following:

CPU data path

How wide a data path will your application require, 32-bit or 16-bit? If a
32-bit data path is not needed, choosing 16-bit data path will generate a

smaller, faster CPU core.

Data Path Logic Elements Used | Address Range
16-bits 1100 128 K
32-bits 1700 4GB

Multiplier

If your code performs few multiplication operations, does not contain
time critical multiplication, or you are trying to make the CPU core as
small as possible, use the software math libraries included with the C
compiler. If, on the other hand, your code performs numerous
multiplication operations or needs to be optimized for speed, choose one
of the dedicated hardware multipliers (MSTEP or MUL).

Multiplication | Additional Logic | Clock Cycles | Clock Cycles
Option Elements Used 16x16>32 32x32>32
None (software 0 80 250
MSTEP +200 18 80
MUL +400 2 16

On-Chip Memory

Decide how much on-chip ROM and RAM your system will require. The
Nios processor uses embedded system blocks (ESBs) for on-chip memory.
There are practical limits to the number of ESBs used for on-chip memory
(see the Altera Device Data Book for details on the number of ESBs available
in particular devices). The Nios system builder software imposes a
maximum limit of 20K per on-chip memory device.

Off-Chip Memory

Interfaces to off-chip memory are provided for flash memory and SRAM.
The GERMS monitor, included in the development kit, contains software
routines for writing to, and erasing Advanced Micro Devices (AMD) flash
devices.

Altera Corporation 3



Overview

Peripherals

Decide the type and number of peripherals to be connected to the Nios
processor. A number of peripherals come with the Nios development kit.
Interface to off-chip or custom on-chip peripherals using either the
parallel input/output peripheral (PIO), or user-defined interface. Below is
a list of peripherals included with the Nios development kit:

Peripheral Description
UART Universal Asynchronous Receiver Transmitter
PIO Parallel Input/Output
Timer General-purpose timer
SPI Serial Peripheral Interface
User Defined Interface | Custom interface to on-chip and off-chip peripherals
Off-chip shared bus | Shared interface to off-chip peripherals and memory

Step 2: Build the Processor

Using the Quartus development software and the MegaWizard Plug-In
manager, generate a custom processor system based on the choices you
made in Step 1. As you build the processor, you will:

Choose the width of the processor data path.

Specify the processor boot address.

Assign peripheral memory addresses and alignment.

Assign interrupt priorities for peripherals and external interfaces as
needed.

Specify peripheral setup and hold requirements as needed.

Assign peripheral and memory wait states as needed.

Enable dynamic bus-sizing to narrow memory (or peripheral)
interfaces as needed.

B Assign code (or data) files for on-chip ROM and/or RAM.

Once the Nios system has been created, download the processor
configuration ("sof" or "pof" file) to the APEX device on the development
board using the Quartus II software and the ByteBlasterMV™ download
cable.

A monitor program, called GERMS, is included in the Nios development
kit. GERMS allows you to run executable code, read from, and write to
memory, download blocks of code (or data) to memory, and erase flash
(see the GERMS Monitor section for details). By assigning the GERMS
monitor to the processor boot address (typically on-chip ROM), you can
immediately begin code development, download, and debug.

Altera Corporation



Overview

Altera Corporation

See the Nios Embedded Processor System Builder Tutorial for step-by-step
instructions on creating a Nios processor-based SOPC design.

Step 3: Save the Processor Configuration to FLASH

The programmable logic device configuration (hardware design) on the
development board is volatile and is overwritten by the contents of flash
memory when the RESET button (SW2) is pressed or power is cycled. The
development board contains logic that supports a dual configuration
scheme as follows:

By default, the APEX device is configured from a "User" section of flash
memory (address range 0x180000 - Ox1BFFFF). If the APEX device
fails to configure due to corrupt or empty "User" section, it is
automatically configured from the "Factory" section of flash memory
(address range 0x1C0000 - Ox1FFFFF). When jumper JP2 is shorted,
and the RESET button is pressed, the APEX device is forced to configure
from the "Factory" section of flash memory.

During development, it is recommended that you always store your new
design to the "User" section of flash memory. By doing this, if a hardware
bug occurs you can reconfigure the APEX device with the known good
reference design stored in the "Factory" section of flash memory. The
factory section of flash memory is loaded by Altera with a 32-bit Nios
system design.

See hexout2flash on page 36 of this document, or the Programming
section of the Nios Embedded Processor System Builder Tutorial for details on
downloading device configuration files to flash memory.

Step 4: Create the Application Code

Using a text editor (xemacs and vi editors are included) write and compile
your application code.

For small- to medium-sized software projects, use nios-build to generate
executable code (see nios-build in the Nios Software Utilities section of this
document for details ).

For large projects, use hand-crafted make files. Refer to the online GNU
documentation by choosing Programs > Cygwin > Cygwin
Documentation > Using make (Windows Start Menu) for details on using
make.




Overview

Step 5: Download the Executable Code

Use nios-run to download and run the application on the development
board (see nios-run in the Nios Software Utilities section of this document
for details).

Step 6: Debug the Code

If you choose to debug your code using printf(), your messages will be
sent to the STDIO (e.g. UART). The nios-run utility acts as a dumb
terminal to display these messages on your development system terminal.

If more sophisticated debugging is called for, rebuild your code with
debugging set ON, and use the GNU debugger (GDB) to step through the
code, examine memory and register contents, etc. See nios-elf-gdb in the
Nios Software Utilities section of this document for details.

Step 7:Transition to Auto-Booting Code

Code in On-Chip Memory

Change on-chip RAM to on-chip ROM and rebuild the design (Step 2)
using your code to initialize ROM (GERMS monitor is removed
completely).

Code in Off-Chip Memory

Store program in flash memory so that the GERMS monitor will
automatically execute it after initialization. Use srec2flash to add a routine
that copies the executable code from flash memory to SRAM at start time
(see srec2flash in the Nios Software Ultilities section of this document for
details).

Or

Remove the GERMS monitor entirely, and change the reset address to
point to the program in flash memory. Use srec2flash to add a routine that
copies the executable code from flash memory to SRAM at start time.

Step 8:Transition Design From Nios Development Board to Target
Hardware

If possible, use the GERMS monitor to download code to the target
hardware. Having the ability to iterate software without burning a new
ROM or recompiling the hardware design is very useful.

Altera Corporation



Overview

GERMS
Monitor

Altera Corporation

The GERMS monitor is included in the default reference design, loaded in
flash mrmory of the development board. On power-up, the GERMS
monitor is the first code to execute and controls the boot process. Once
booted, it provides a way to read and write memory.

"GERMS" is an acronym for remembering the rather minimal command
set of the monitor program included in the Nios development kit:

Go (run a program)
Erase flash

Relocate next download
Memory set and dump
Send S-records

Send I-Hex records

T2 EmQ

Monitor Commands

When the monitor is running, it is always waiting for commands.
Commands consist of a letter, followed by an address. Some commands
take two addresses, separated by a hyphen. The write command takes an
address followed by a colon, followed by data to write.

Commands are executed as they are typed. If you are writing to memory,
for example, each word is stored as soon as you enter it. There is no
backspace. The only "line editing" available is the ability to restart the
monitor immediately, by pressing the ESC key.




Overview

All numbers and addresses entered into the monitor are in hexadecimal.

Syntax Example Description
G<base address> G40000 GO—Execute a CALL instruction to the specified
address.
E<base address> E180000 Erase flash memory. If the address is within the range

of the "flash" ROM, the sector containing that address
will be erased.

R<from address>-<to address> R0-180000 Offset the next download. The next S-record or I-Hex
record downloaded will be stored offset by the range
specified.

M<address> M50000 Display memory starting from the address.

M<address>-<address> M40000-40100 Display a range of memory. Pressing <CR> again will

show the same number of bytes, starting where the
last M command ended.

M<address>:<value> <value>... M50000:12 34 Write successive 16-bit words to memory, until the
end of line.
M<address>-<address>:<value> | M50000-50100:AA55 | Fill a range of memory with a 16-bit word.

<CR> <CR> Display the next 64 bytes of memory.
S<S-record data> S21840000... Write S-record to next memory location.
:<|-hex record data> :80000004... Write I-hex record to next memory location.
<ESC> <ESC> Restart the monitor.

Boot Process

The monitor is located at address zero, 0x0000, in the default
configuration of the Nios development board.

There are several ways the monitor might come to be executed. When the
default design is downloaded, execution begins at address zero, which is
the monitor. Later on, if any TRAP or interrupt occurs, and the vector table
has not been altered, the monitor will be executed.

When the monitor starts running, it performs some system initialization:
1. Turns off interrupts on the UART, timer, and switch PIO.

2. Sets current window pointer (CWP) to HI_LIMIT.

3. Sets interrupt priority (IPR) to 63.

-

Sets %sp to 0x080000 (NA_RAMTop).

8 Altera Corporation




Overview

Altera Corporation

It then looks for code to execute out of flash memory: m
5. Examines the two bytes at 0x14000C (NA_FlashBase + 0x04000C).
6. Examines button 0 on the switch PIO (SW4).

7. If the button is not pressed, and the two bytes contain 'N' and 'i',

then the monitor executes a CALL to location 0x140000
(NA_FlashBase + 0x040000).

If the code is not executed in step 7, or that code returns, the following
steps occur:

8. Prints an 8-digit version number to STDOUT, of the form
“#vvvvPPPP” followed by a carriage return, where “vvvv” is a
monitor pseudo-version—it will be different but not necessarily
consecutive for different builds of the monitor—, and PPPP is the
processor version number, as retrieved from processor register
CTL 6.

9.  Wait for user commands from STDIN.

Booting From Flash Memory

Programs can be stored in flash memory and caused to execute on
power-up or reset. This is particularly useful when developing
application code targeted for flash memory.

The GERMS monitor checks for the existence of application software in
flash memory (Boot Process, Step 5). If found, the processor immediately
executes the code. The software utility, srec2flash, should be used to
prepare programs for this style of operation (see srec2flash in the Nios
Software Ultilities section of this document). Srec2flash adds a small piece
of code to the beginning of the program that will copy the application
code from flash (slow memory) to SRAM (fast memory) then run from
SRAM.

To return program execution to the GERMS monitor (i.e., avoid running
code stored in flash memory) perform the following steps:

1. Hold down SW4.
2. Press then release the RESET button (SW2).

3. Release SW4.



Overview

Overview Of The SDK will be generated as a subdirectory of your Quartus (or
MAX+PLUS® II) project. It will be named with the name of the Nios
The SDK Tree system, with "_sdk" appended. The 32-bit reference design

(ref_32_system), for example, has the following directory structure:

.../ref_32_system_sdk/
|

+---inc/
|

+---1lib/
|

+--- src/

The Include ("inc") Directory

[bash] ...inc/: 1ls -1

total 17

-rw-r--r-- 1 niosuser Administ 281 Jan 24 15:19 nios.h

-rw-r--r-- 1 niosuser Administ 245 Jan 24 15:19 nios.s

-rw-r--r-- 1 niosuser Administ 8990 Jan 24 15:19 nios_macros.s
-rw-r--r-- 1 niosuser Administ 3853 Jan 24 15:19 nios_map.h
-rw-r--r-- 1 niosuser Administ 3877 Jan 24 15:19 nios_map.s
-rw-r--r-- 1 niosuser Administ 5267 Jan 24 15:19 nios_peripherals.h
-rw-r--r-- 1 niosuser Administ 3755 Jan 24 15:19 nios_peripherals.s

The SDK include directory, called "inc", contains several files intended to
be included from your application programs. These files define the
peripheral addresses, interrupt priorities, register structures, and other
useful constants and macros.

Files are included in both C and assembly language. Each file of your
program should include nios.h if the file is written in C or C++, or nios.s
if the file is written in assembly language.

nios.h (and nios.s)

Includes the other relevant include files described below:

nios_macros.s

Includes various useful assembly language macros. See Assembly Macros
in Appendix B for more details.

nios_peripherals.h (and nios_peripherals.s)
Contains register maps for each peripheral in your system. Additionally,

nios_peripherals.h contains C prototypes for library routines available for
each peripheral.

10 Altera Corporation



Overview

For C programs, the register maps are provided as structures. For
example, the timer peripheral's structure is as follows:

typedef volatile struct

int np timerstatus; // read only, 2 bits (any write to clear TO)
int np_timercontrol; // write/readable, 4 bits

int np_timerperiodl; // write/readable, 16 bits

int np_timerperiodh; // write/readable, 16 bits

int np_timersnapl; // read only, 16 bits

int np_timersnaph; // read only, 16 bits

} np_timer;

enum
np_timerstatus_run_bit =1, // timer is running
np_timerstatus_to_bit = 0, // timer has timed out

np_timercontrol_ stop bit 3, // stop the timer
np_timercontrol_ start_bit = 2, // start the timer
np_timercontrol cont_bit 1, // continuous mode
np_timercontrol_ito bit = 0, // enable time out interrupt

np_timerstatus_run mask = (l<<1), // timer is running
np_timerstatus_to_mask = (1<<0), // timer has timed out

np_timercontrol_stop_mask =
np_timercontrol_start_mask =
np_timercontrol_cont_mask =
np_timercontrol_ ito mask =

i

1<<3), // stop the timer
1<<2), // start the timer
1<<1), // continous mode

(
(
(
(1<<0) // enable time out interrupt

Each register is included as an integer (int) structure field, so that it can be
used on a 16-bit or a 32-bit Nios processor interchangeably.

For the registers that have sub-fields or control bits, additional constants
are defined to reference those fields, by both mask and bit number. (The
bit numbers are useful for the Nios assembly language instructions SKPO
and SKP1).

Altera Corporation 11



Overview

12

nios_map.h (and nios_map.s)

This file provides addresses for all your peripherals, interrupt numbers,
and other useful constants. Here is an excerpt from the reference design's
nios_map.h:

#define na_timerl ((np_timer *) 0x00000440
#define na_timerl irqg 25
#define na_led pio ((np_pio *) 0x00000460)
#define na_button pio ((np_pio *) 0x00000470)
#define na button pio_irg 27
#define nasys_printf uart ((np_uart *) 0x00000400)
#define nasys_printf uart_irg 26

The name na_timerl is derived from the peripheral's name "timer", with
"na_"added to the beginning, standing for "Nios address". It is defined as
a number cast to the type of "np_timer *". This allows the symbol
"na_timer1" to be treated as a pointer to a timer structure. The following is
an example of code written to access the timer:

int status = na_timerl->np_ timerstatus; /* get status of timerl */

The Library ("lib") Directory

[bash] ...lib/: 1s -1

total 119

-YwW-r--r-- 1 niosuser Administ 3177 Jan 25 12:46 Makefile
-IW-r--r-- 1 niosuser Administ 95944 Jan 25 12:46 libnios32.a
~YW-r--T-- 1 niosuser Administ 3067 Jan 24 01:19 nios_cstubs.s
drwxr-xr-x 2 niosuser Administ 12288 Jan 25 12:46 obj32/
-YW-r--r-- 1 niosuser Administ 5871 Jan 24 01:19 pio_lcdl16207.c
~TW-r--T-- 1 niosuser Administ 803 Jan 24 01:19 uart_txhex32.s
~YW-r--T-- 1 niosuser Administ 699 Jan 24 01:19 uart_txstring.s
[bash] ...1lib/:

Altera Corporation



Overview

Altera Corporation

The SDK library directory, called "lib", contains a Makefile, an archive file, m
source, and object files for libraries usable by your Nios system.

Some of the source files are in assembly language, and others are in C. The
archive contains assembled (or compiled) versions of routines from each
file, suitable for linking to your program. The routines are described in
detail in the Nios Library Routines section of this document.

The command line tools "nios-build" uses the appropriate library
directory, either "libnios32.a" or "libnios16.a", depending whether it is
building for a 32-bit or Nios 16-bit system, respectively.

The Makefile contains instructions for rebuilding the archive file. The
beginning of the Makefile contains several settings to enable or disable
various features of the Nios library. Here is an excerpt from a typical Nios
library Makefile.

#

# Nios SDK Generated Makefile

# 2001.01.24 01:19:30

# //d/niosbuild/srctree/Delta/SWDev/bin/nios_reference32.ptf
#

NIOS USE MSTEP = 1 # CPU option (shift, test, & add)

NIOS USE_MULTIPLY = 0 # CPU option (16x16->32)

NIOS_MONITOR = nios_germs_monitor

NIOS_SYSTEM NAME = nios_system_module

NIOS_USE_CONSTRUCTORS = 1 # Call c++ static constructors smaller
footprint

NIOS_USE_CWPMGR = 1 # Turn off to disable underflow handling
(dangerous)

NIOS_USE_FAST MUL = 1 # Faster but larger int multiply routine
NIOS_USE_SMALL_PRINTF = 1 # Smaller non-ANSI printf formats

M = 32 # Nios 32

You can change each of these settings to customize the Nios library. After
changing a setting, type "make -s all" from the command line to rebuild
the library.

Below is an explanation of each setting:

NIOS_USE_MSTEP

If NIOS_USE_MSTERP is set to 1, then the Nios library will override the
standard multiplication routine with a faster one that uses the MSTEP
instruction. This is set to 1 automatically if the MSTEP feature is selected
in the system builder software. (This setting must be used in conjunction
with NIOS_USE_FAST_MUL).

13



Overview

14

NIOS_USE_MULTIPLY

If NIOS_USE_MULTIPLY is set to 1, then the Nios library will override
the standard multiplication routine with a faster one that uses the MUL
instruction. (This runs even faster than MSTEP multiplication.) This is set
to 1 automatically if the MULTIPLY feature is selected in the system
builder software. (This setting must be used in conjunction with
NIOS_USE_FAST_MUL.)

NIOS_MONITOR

This is a short string used by the GERMS monitor. The monitor prints this
string to the STDIO when it starts up.

NIOS_SYSTEM_NAME

This is a string with the name of the Nios system.

NIOS_USE_CONSTRUCTORS

If NIOS_USE_CONSTRUCTORS is set to 1, then the Nios library will
contain startup code to call any initializing code for statically allocated
C++ classes. By default, this is set to 1. Changing this setting to 0 will
slightly reduce the code footprint of the compiled software if static
initialization of C++ classes is not needed. (Useful for small software
ROM sizes.)

NIOS_USE_CWPMGR

If NIOS_USE_CWPMGR is set to 1, then the Nios library will contain code
for handling register window underflows. Changing this setting to 0 will
reduce the code footprint of the compiled software. This should only be
done if the code does not call to a subroutine depth that exceeds the
register file size. See the Nios Programmers Reference Manual for more
details.

NIOS_USE_FAST_MUL

To instruct the library to perform integer multiplications with either
optional instruction MUL or MSTEP, NIOS_USE_FAST_MUL must be 1.
If this setting is 1 and neither MUL nor MSTEP are enabled, then a hand-
optimized integer multiplication routine will be linked into the Nios
library.

Altera Corporation



Overview

Nios Program
Structure

Altera Corporation

NIOS_USE_SMALL_PRINTF

The standard printf() routine in the GNU libraries takes about 40k of Nios
code. It contains support for the complete ANSI printf() specification,
including floating point numbers. If NIOS_USE_SMALL_PRINTF is 1,
then a more minimal implementation is linked into the Nios library,
which takes about 1k of Nios code. This "small printf" supports only
integers, and only the formats of %c, %s, %d, %x, and %X.

M

This will be set to either 16 or 32, to match the width of the Nios CPU.
Also, nios-build looks at this value to set the appropriate compiler and
assembler options when building.

In the typical case of a C program built with nios-build, the following table
shows the memory layout that is represented in the resultant S-record file.

Address, Contents
ascending
Base + 0x00 A simple preamble, consisting of a JUMP instruction to the

symbol “_start", and the four characters 'N','i','0",'s". This is
guaranteed to be at the beginning of the S-record output file.
It comes from the library file "nios_jumptostart.o".

Base + 0x10 Your program's "main()" will be in here somewhere, as well
as all your other routines, in order. The command that nios-
build issues to the GNU linker has "nios_jumptostart.o" as its
first file, and your C program as its second.

(A higher address) | A routine with the label "_start". This comes from the library
file "nios_setup.o". It does some initialization, and then calls
"main()".

(A higher address) | Two routines for handling "register window underflow" and
“register window overflow", which are required by the Nios
embedded processor to execute calling chains that are
arbitrarily deep. These come from the library file
"nios_cwpmanager.o".

(A higher address) | Any other Nios library routines that your program references.
The linker extracts only those that are used from the file
"libnios32.a", and includes them in the final program.

(A higher address) | Any read-only data from your program, such as strings or
numeric constants.

(A higher address) | Any static variables in your program.

15




Overview

Nios Library

Routines

The SDK for your Nios system will have a library built called libnios32.a
(for 32-bit Nios system) or libnios16.a (for a 16-bit Nios system); either will
be referred to in this document as the Nios library. The routines available
in it will vary depending on the peripherals in the particular Nios system.
This section describes the routines that are always present, as well as the
optional peripheral routines.

C Runtime Support

Before a compiled program is run, certain initializations must take place.
When nios-build is used to compile and link a program, the first routine
executed is "_start", which performs this initialization and then calls the

"main()" routine. Furthermore, the standard C libraries rely on several
low-level platform-specific routines.

The following table lists the low-level C runtime support provided by the
Nios library, always present in the Nios library:

Routine

Source File

Description

_start

nios_setup.s

Performs initialization prior to calling main().

_exit

nios_cstubs.s

Execute a JMP to "nasys_reset_address".

_sbrk

nios_cstubs.s

Increments "RAMLimit" by the requested amount and returns the previous value
for it, unless the new value would be within 256 bytes of the current stack pointer,
in which case it returns 0. This is the low-level routine used by malloc() to allocate
more heap space.

Isatty

nios_cstubs.s

Returns "1", indicating to the C library that there is a tty.

_cClose

nios_cstubs.s

Returns "0"; not used by Nios software without a file system, but necessary to link

_fstat

nios_cstubs.s

Returns "0"; not used by Nios software without a file system, but necessary to link

_kill

nios_cstubs.s

Returns "0"; not used by Nios software without a file system, but necessary to link

_getpid

nios_cstubs.s

Returns "0"; not used by Nios software without a file system, but necessary to link

_read

nios_cstubs.s

Calls nr_uart_rxchar() to read a single character from a UART. The "fd" parameter
is treated as the base address of a UART.

_write

nios_cstubs.s

Call nr_uart_txchar() to print characters to a UART. The "fd" parameter is treated
as the base address of a UART. This has the useful effect of allowing the routine
fprintf() to print to any UART, by passing a UART address in place of the file
handle argument.

__mulsi3

nios_math1.s

This routine overrides the standard signed 32-bit multiplication routine in the GNU
C library. It is faster than the standard routine, and uses the MUL or MSTEP
instructions (if present), and does not use a register window level. It uses more
code space than the standard routine.

__mulhi3

nios_math1.s

This routine overrides the standard unsigned 32-bit multiplication routine in the
GNU C library. It is faster than the standard routine, and uses the MUL or MSTER
instructions (if present), and does not use a register window level. It uses more
code space than the standard routine.

16

Altera Corporation



Overview

_start

The first code executed by a Nios program is the preamble's jump to
_start. The second code executed is the _start code. Beforea C program can
run, various initialization must be performed. The _start code does this.
The initialization consists of the following steps:

1. Initialize the stack pointer to “nasys_stack_top”.

2. Zero program storage between “__bss_start” and “_end”.

3. Setan internal variable named “RAMLimit” to “_end” (malloc
claims memory upwards from here).

4. Optionally install the CWP Manager.
5. Optionally call the C++ static constructors.

6. Executes a CALL to the routine “main()”, which normally is the
main entry point of your C routine.

7. If “main()” should happen to return, its return value is ignored, and
a TRAP 0 is executed. This usually results in restarting the monitor.

System-Level Services

The following system-level service routines are always present in the Nios
library, and are called automatically unless disabled in the Makefile.

Altera Corporation 17



Overview

18

Interrupt Service Routine Handler

The Nios processor allows up to 64 prioritized, vectored interrupts
(numbered 0 to 63). The lower the interrupt number the higher the
priority. Interrupt vectors 0 through 15 are reserved for system services,
leaving 48 interrupt vectors for user applications.

For details on Nios CPU exception handling, refer to the “Exceptions”
section of the Nios Embedded Processor Programmer’s Reference Manual.

nr_installuserisr

Syntax: void nr_installuserisr(int trapNumber, void *ISRProcedure, int
context);

Parameters: trapNumber - the exception number to be associated with a user
service routine

ISRProcedure - a routine you supply, which has a prototype of:
typedef void (*nios_isrhandlerproc) (int context) ;

context - a value that will be passed to the
routine specified by isrProcedure.

Description:  This routine installs an interrupt service routine for a specific
exception number. If nr_installuserisr() is used to set up the
exception handler, then the exception handler can be an ordinary
C routine.

Note: If you manipulate the vector table directly, you must
completely understand the mechanisms of the Nios register
window, control registers, etc.

The exception handler will receive the context value as its only

argument when called. The trap handler is still responsible for

clearing any interrupt condition for a peripheral that it services.
Include: nios.h

Altera Corporation



Overview

Current Window Pointer Manager

A detailed understanding the current window pointer (CWP) Manager is
not required to write Nios software, but it becomes part of the final
program, and is briefly described in the following section.

The Nios embedded processor contains 128, 256, or 512 general-purpose
registers. Of these, exactly 32 are visible to the software at any particular
moment. They are named %r0-%r31, and can also be referred to as
%g0-%g7 (global), %00-%07 (out), %L0-%L7 (local), and %i0-%i7 (in).

Which 32 registers are visible is determined by the CWP bits of the Nios
STATUS register (%ctl0, readable via the RDCTL instruction). See the Nios
Programmers Reference Manual for more details.

Subroutines execute a SAVE instruction, which decrements the CWP by
one, revealing 16 "new" registers. The “caller’s” %o registers are visible to
the “callee” as %i registers. Eventually, however, there are no more
registers to reveal, and the CWP is pointing to the lowest registers.

This is where the CWP manager comes in: when a SAVE is executed, it
induces a software exception that is handled by the CWP manager's
underflow handler. This handler saves every register onto the stack, and
repositions the CWP back to the top.

Conversely, subroutines execute a RESTORE instruction when they are
ready to return. If the CWP is already at the top of the register file, a trap
is induced, which is handled by the CWP Manager's overflow handler.
This handler restores the register contents from when they were saved by
the corresponding underflow condition.

nr_installcwpmanager

Syntax: void nr_installcwpmanager(void);

Parameters: none

Description:  This routine is called automatically by _start() if the library was built
with NIOS_USE_CWPMGR = 1. It installs service routines for the
Nios CPU underflow and overflow exceptions.

Include: nios.h

Altera Corporation 19



Overview

20

General-Purpose System Routines

The following routines perform general-purpose operations.

nr_delay

Syntax:
Parameters:

Description:

Include:

nr_zerorange

Syntax:
Parameters:

Description:

Include:

void nr_delay(int milliseconds);

milliseconds - Length of time, in milliseconds, for program
execution to be suspended.

Causes program execution to pause for the number of milliseconds
specified in milliseconds. It executes a tight countdown loop during
this time.

nios.h

void nr_zerorange(char *rangestart, int rangeByteCount);
rangestart - first byte to set to zero

rangeByteCount - number of consecutive byte to set to zero

Writes zero to range of bytes in memory starting at rangeStart and
counting up to rangeByteCount

nios.h

Altera Corporation



Overview

High-Level C

Support

Altera Corporation

These routines are always present in the Nios library, unless disabled in
the Makefile.

Routine

Source File

Description

Printf

nios_printf.c

This version of the standard C printf() function omits all
support for floating point numbers, and supports only
the %d, %X, %X, %c, and %s formats. The Nios library
includes this version of printf() because the standard
library routine takes about 40k of Nios code. This large
footprint is primarily for floating point support, and the
Nios CPU is often used for applications that do not
require floating point. The Nios library version of
printf() is about 1k of Nios code.

Sprintf

nios_printf.s

Uses the Nios library's version of printf() to print to a

string in memory.

21




Overview

oot

Notes:

22 Altera Corporation



A\ [

Routines

Nios Peripheral

Routines

The tables below contain lists of C (or assembly) call-able peripheral

routines that are automatically added to the custom SDK library when the
corresponding peripherals are included in the Nios system design.

P10 Routine

Description

nr_pio_showhex

Sends low byte to PIO named na_seven_seg_pio.

SPI Routine

Description

nr_spi_rxchar

Reads a character from the SPI peripheral whose
address is passed as an argument.

nr_spi_txchar

Sends a single character to the SPI peripheral whose
address is passed as an argument.

Timer Routine

Description

nr_timer_milliseconds

Installs an interrupt service routine and returns zero the
first time it is called. For each subsequent call, it returns
the number of milliseconds that have elapsed since the
first call.

UART Routine

Description

nr_uart_rxchar

Reads a character from the UART whose address is
passed as an argument.

nr_uart_txcr

Sends a carriage return and line feed to the UART at
address nasys_printf UART.

nr_uart_txchar

Sends a single character to the UART whose address is
passed as an argument.

nr_uart_txhex

Prints an integer value, in hexadecimal, to the UART at
address nasys_printf UART.

nr_uart_txhex16

Prints the value of a short integer, in hexadecimal, to the
UART at address nasys_printf_ UART.

uart_txchar32

Prints the value of a long integer, in hexadecimal, to the
UART at address nasys_printf_UART.

nr_uart_txstring

Prints a null-terminated string to the UART at address
nasys_printf_UART.

Altera Corporation

23




Routines

Nios PIO
Register Map
A1..AD Register Name Variable Size 1..32 bits

0 Data-in' Data Value currently on PIO inputs (read).

Data-out32 New value to drive on PIO outputs (write).

DataDir? Data Direction (optional): Individual control for each port bit. 1=out, O=in.

Int Mask? Interrupt Mask (optional): Per-bit IRQ enable/disable.
3 Edge Cap'[ure?”b Edge Capture (optional): Per-bit synchronous edge detect-and-hold.

Notes

1) Read-only value.
2) Host-written control value. Can be read back at any time.

a) A write-operation to the Data-out register changes the value on the PIO output pins, if any.

(
(
(8) Write-event register. A write operation to this address causes an event in the device.
(
(

b) A write-operation to the Edge Capture register clears all bits in the register 0.

24

Software Data Structure

typedef volatile struct

int np_piodata; // read/write, up to 32 bits
int np_piodirection; // write/readable, up to 32 bits, 1l-s>output
// bit

int np piointerruptmask; // write/readable, up to 32 bits, 1->enable
// interrupt
int np_pioedgecapture; // read, up to 32 bits, cleared by any write
} np_pio;

Example: Direct access to PIO

void TurnOnLEDs (void)

{

// the reference design has a PIO named na_led pio

na_led_pio->np piodirection = 3; // Set direction: output

na_led_pio->np piodata = 0; // both LEDs off
nr_delay(1000) ; // wait 1 second
na_led_pio->np piodata = 1; // turn on first led
nr_delay(1000) ; // wait 1 second
na_led_pio->np piodata = 3; // both LEDs on

PIO Peripheral Routines

The PIO routines are present in the Nios library if there are one or more
PIOs present in the Nios system.

Altera Corporation



Routines

nr_pio_showhex

Syntax: void nr_pio_showhex(int value);

Parameters: value - Data to be sent to seven-segment display.

Description:  This routine assumes that a 16-bit wide PIO named
"na_seven_seg_pio" is attached to a two-digit seven-segment
display, in which segments are illuminated when the corresponding
bits are driven low (zero). PIO bits are assigned to the seven-
segment display elements as shown below:

AmEIN AP
9 13 1 5
L/, N\ L/, N
=8 - aw
10 12 2 4
N L ® N @
Include: nios.h
Example: #include "nios.h"

void main (void)
int c;

printf ("Please enter a character:\n");

while((c = nr uart_rxchar(0)) == -1);
//wait for valid input

printf ("Your character is:\t%c\n", c¢);

Altera Corporation 25



Routines

Nios SPI
Register Map (Master)
A2..A0 |Register| 15 | 14 |13 (12 |11 | 10| 9 8 7 6 5 4 3 2 1 0
Name
0 RxData’ Rx Data(n-1..0)
1 TxData? TxData(n-1..0)
2 Status® E* |RRDY [TRDY| TMT | TOE* | ROE*
3 Control* iE* |iRRDY |[iTRDY| iTMT |iTOE* [iROE*
4 Reserved
5 Select® Slave Select Mask
Notes

(1) Read-only value.

(2) Write-event register. A write operation to this address causes an event in the device.
(3) A write operation to the Status register clears the following bits: ROE, TOE, E.

(4) Nios CPU-written control value. Can be read back at any time.

(6) Write/read register. Bit mask for slave addressing.

Register Map (Slave)

A2..A0 |Register| 15 | 14 |13 (12 |11 | 10| 9 8 7 6 5 4 3 2 1 0
Name
0 RxData’ Rx Data(n-1..0)
1 TxData? TxData(n-1..0)
2 Status® E* |RRDY |[TRDY| TMT | TOE* | ROE*
3 Control* iE* |iRRDY [iTRDY| iTMT |iTOE* [iROE*
Notes

(1) Read-only value.

(2) Write-event register. A write operation tothis address causes an event in the device.
(3) A write operation tot he Status register clears the following bits: ROE, TOE, E.

(4) Nios CPU-written control value. Can be read back at any time.

26 Altera Corporation



Routines

Software Data Structure

typedef volatile struct

int np_spirxdata; // Read-only, 1-16 bit

int np_spitxdata; // Write-only, 1-16 bit

int np_spistatus; // Read-only, 9-bit

int np_spicontrol; // Read/Write, 9-bit

int np_spireserved; // reserved

int np spislaveselect; // Read/Write, 1-16 bit, master only
} np_spi;

SPI Routines

The Serial Peripheral Interface (SPI) routines are present in the Nios
library if there are one or more SPI peripherals present in the Nios system.

Altera Corporation 27



Routines

28

nr_spi_rxchar

Syntax:
Parameters:
Description:

Include:

nr_spi_txchar.

Syntax:
Parameters:

Description:

Include:

int nr_spi_rxchar(np_spi *pSPlI);

pSPI - Pointer to the SPI peripheral.

Reads a character from the SPI peripheral whose address is
passed as pSPI. Ifthere is no character waiting, returns -1. If zero
is passed for the peripheral address, reads a character from the
default SPI memory location nasys_printf_uart (defined in nios.h).
nios.h

int nr_spi_txchar(int i, np_spi *pSPI);
i - character to be sent

pSPI - Pointer to the SPI peripheral.

Sends a single character, i, to the SPI peripheral whose address is
passed as pSPI. If zero is passed for the peripheral address, sends
character to the SPI peripheral at the default memory location
nasys_printf_uart (defined in nios.h).

nios.h

Altera Corporation



Routines

Nios Timer
Register Map
A2..A0 | Register| 15 | 14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
Name
0 |Status'? Run® |TO*
1 Control | Stop | Start | Cont | iTO
2 |Period(L) Timeout Period (bits15 : 0)*
3 Period(H) Timeout Period (bits 31 : 16)
4 Snap(L)5 Timeout Counter Snapshot (bits 15 : 0)
5 Snap(H)5 Timeout Counter Snapshot (bits 31 : 16)
Notes

(1) Read-only value.

(2) Host-written control value. Can be read back at any time.

(8) Write-event register. A write operation to this address causes an event in the device.
(

(

4) A write-operation tothe Status register clears the TO bit.
5) A write-operation to either the Sanp(L) or Snap(H) registers update both registers with a coherent snapshot of the
current internal-counter value.

Software Data Structure

typedef volatile struct
{
int np_ timerstatus; // read only, 2 bits (any write to clear TO)
int np_timercontrol; // write/readable, 4 bits
int np_timerperiodl; // write/readable, 16 bits
int np_timerperiodh; // write/readable, 16 bits
int np_timersnapl; // read only, 16 bits
int np_timersnaph; // read only, 16 bits
} np_timer;

Altera Corporation 29



Routines

Example: Direct access to Timer

#include "nios.h"
int main(void)
int t = 0;

// Set timer for 1 second
na_timerl->np_timerperiodl = (short) (nasys_clock freq & 0x0000ffff);
na_timerl->np timerperiodh = (short) ((nasys_clock freq >> 16) & 0x0000ffff);

// Set timer running, looping, no interrupts
na_timerl->np timercontrol = np timercontrol start _mask + np_timercontrol cont_mask;

// Poll timer forever, print once per second
while (1)

{

if (na_timerl->np timerstatus & np_timerstatus_to_mask)

{

printf ("A second passed! (%d)\n",t++);

// Clear the to (timeout) bit
na_timerl->np timerstatus = 0; // (any value)

}

Timer Peripheral Routines

The timer routines are present in the Nios library if there is one or more
timer peripheral present in the Nios system.

30 Altera Corporation



Routines

nr_timer_milliseconds

Syntax: int nr_timer_milliseconds(void);

Parameters: None

Description:  This routine requires the existence of a timer called t imer1,
with a base address defined by na_timer1 and an interrupt
number defined by na_timer1_irg. The first time this routine
is called, it installs an interrupt service routine for the timer,
and returns zero. For each subsequent call, the number of
milliseconds that have elapsed since the first call is returned.

Include: nios.h

Altera Corporation 31



Routines

Nios UART
Register Map
A2..A0 |Register| 15 | 14 |13 (12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
Name
0 RxData’ Rx Data
1 TxData? TxData
2 Status® E* |RRDY [TRDY| TMT | TOE* | ROE* | BRK* | FE* | PE*
3 Control* iE* |iRRDY |iTRDY| iTMT |iTOE* [iROE*|iBRK* | iFE* | iPE*
4 Divisor Baud Rate Divisor (optional)
Notes

(1) Read-only value.

(2) Write-event register. A write operation to this address causes an event in the device.
(3) A write-operation to the Status register clears these bits: E, TOE, ROE, BRK, FE, PE.
(4) Host-written control value. Can be read back at any time.

Software Data Structure:

typedef volatile struct

int np_uartrxdata; // Read-only, 8-bit

int np_uarttxdata; // Write-only, 8-bit

int np_uartstatus; // Read-only, 9-bit

int np uartcontrol; // Read/Write, 9-bit

int np uartdivisor; // Read/Write, 16-bit, optional
} np_uart;

UART Peripheral Routines

The UART routines are present in the Nios library if there are one or more
UARTSs present in the Nios system.

32 Altera Corporation



Routines

nr_uart_rxchar

Syntax: int nr_uart_rxchar(np_uart *uartBase);

Parameters: uartBase - Pointer to the UART peripheral.

Description:  Reads a character from the UART peripheral whose address is
passed in uartBase. If there is no character waiting, return -1. If
zero is passed for the peripheral address, reads a character from
the UART at location nasys_printf_uart (nios_map.h).

Include: nios.h

Example: #include "nios.h"
void main (void)

int c;
printf ("Please enter a character:\n");

while ((c = nr_uart_rxchar(0)) == -1); //wait for valid
input

printf ("Your character is:\t%c\n", c);

Altera Corporation 33



Routines

34

nr_uart_txchar.

Syntax:
Parameters:

Description:

Include:
Example:

int nr_uart_txchar(int c, np_uart *uartBase);
¢ - Character to be sent.

uartBase - Pointer to the UART peripheral.

Sends a single character, c, to the UART peripheral whose address
is passed as vartBase. If zero is passed for the peripheral address,
sends character to the UART at location nasys_printf_uart (defined

in nios.h).
nios.h
#include "nios.h"

#define kLineWidth 77
#define kLineCount 100

void SendLots (void)
char c;

int 1,3;
int mix;

printf ("\n\nPress character, or <space> for mix: ");

while((c = nr_rxchar(0)) < 0);
printf ("$c\n\n",c);

// Don't show unprintables

if (¢ < 32)
c= t.1;
mix = c==' ';
for(i = 0; 1 < kLineCount; i++)
{
for(j = 0; j < kLineWidth; j++)
{
if (mix)
C++;
if(c >= 127)
c = 33;

nr_uart_txchar(c,0) ;
//send character to UART

nr_uart_txer();

//send carriage return and new line

printf ("\n\n") ;

Altera Corporation



Routines

Altera Corporation

nr_uart_txcr
Syntax:
Parameters:

Description:

Include:

nr_uart_txhex
Syntax:

Parameters:
Description:

Include:

int nr_uart_txcr(void);
None

Sends a carriage return and line feed to the UART at location
nasys_printf_uart (defined in nios.h).
nios.h

int nr_uart_txhex(int x);
x - Integer value to be sent to UART.

Prints the integer value of xin hexadecimal to the UART at location
nasys_printf_uart (defined in nios.h). This will be 4 characters
(0000 to FFFF) if run on a 16-bit Nios CPU, and 8 characters
(00000000 to FFFFFFFF) if run on a 32-bit Nios CPU.

nios.h

35




36

Routines

nr_uart_txhex16

Syntax: int nr_uart_txhex16(short x);

Parameters: x - 16-bit integer value to be sent to UART.

Description:  Prints the 16-bit value of x in hexadecimal to the UART at location
nasys_printf_uart (defined in nios.h). This will be 4 characters
(0000 to FFFF).

Include: nios.h

nr_uart_txhex32

Syntax: int nr_uart_txhex32(long x);

Parameters:  x - 32-bit integer value to be sent to UART.

Description:  Prints the 32-bit value of x in hexadecimal to the UART at location
nasys_printf_uart (defined in nios.h). This will be 8 characters
(00000000 to FFFFFFF). This routine is not available on a 16-bit
Nios CPU.

Include: nios.h

nr_uart_txstring

Syntax: int nr_uart_txstring(char *s);

Parameters: s - Pointer to null-terminated character string.

Description:  Prints the null-terminated string s to the UART at location
nasys_printf_uart (defined in nios.h).

Include: nios.h

Altera Corporation



A I:l = —— A Utilities

-
®
Nios SOftwa re The QNUPro software tools, included in the Nios development. lfi.t,
contain a number of general-purpose software development utilities,
Deve I Op ment including the bash command line shell. Bash is the environment in which
Utl I |t| es Nios software is developed. For details on using bash, run bash and type

"man bash" from the shell prompt.

Additionally, many Nios-specific utilities are included in the
development kit for generating and debugging software. The following
sections provide detailed descriptions of these utilities:

Nios Utility Description

hexout2flash Perl script that readies a Quartus Il software .hexout file for
writing to Nios development board flash memory

nios_bash A startup script to set the bash environment for Nios
development (bash shell)

nios-build Perl script that performs compilation and assembly of source
files, links to Nios library, generates .srec file

nios-convert Perl script that converts .srec files to .mif or .dat file format

nios_csh A startup script to set the bash environment for Nios
development (C shell)

nios-elf-as GNU assembler for Nios

nios-elf-gcc GNU C/C++ compiler for Nios

nios-elf-gdb GNU debugger for Nios

nios-elf-ld GNU linker for Nios

nios-elf-nm GNU tool to extract symbols from Nios object files

nios-elf-objcopy | GNU utility that converts linker output (.out) to S-records (.srec)

nios-elf-objdump | GNU tool to disassemble Nios object files

nios-elf-size This tool produces a report of object file size, for code (text),
data (data), and uninitialized storage (bss).

nios-run A specialized terminal program for communicating with the Nios
development board

nios-vimrc A vim setup compatible with DOS files under Cygwin

srec2flash Perl script that readies a .srec file for writing to Nios

development board flash

Note
On-line documentation for the Cygwin GNUPro tools is available by choosing
Programs > Cygwin > Cygwin Documentation (Windows Start Menu).

Altera Corporation 37



Utilities

38

hexout2flash

Description:

Usage:
Options:

Example:

The Quartus Il software and Max+Plus Il software generate design
files for download to an Altera® complex programmable logic
device (CPLD). One design file format generated by these tools is
a .hexout file. The hexout2flash script converts a .hexout file to a
flash file, suitable for writing to the flash device on the Nios
GERMS monitor commands to erase a section of flash memory,
and relocate the .hexout file to the erased section.

Refer to the Nios Development Board Reference Manualfor details
about the Nios development board.
hexout2flash [options] <filename>[.hexout]

-b <base address> :Location in flash to write file,
: (default 0x180000)
--help :Print help

If your file is called “my_design.hexout”, you would execute the
following commands:

hexout2flash my_ design.hexout
hexout2flash converts my_design.hexout to my_design.flash

Download the .flash file to the development board by typing the
following command:

nios-run my_design.flash

This step writes the design into flash memory at location 0x180000,
and becomes the default booting design for the development
board.

Altera Corporation



Utilities

Altera Corporation

nios_bash

Description:

Usage:

A startup script that properly sets the bash shell environment for
software development using nios-build. Nios-build requires two
shell variables to exist and be exported. A normal Windows install
sets this up for you automatically. The two shell variables are as
follows:

set niosgnu = <location of Nios GNU toolsx>
By default this is /usr/altera/excalibur.

set niossdk = <location of Nios SDK>
By default this is /usr/altera/excalibur/nios-sdk.

Source this script from the .bash_profile at shell startup time. It
adds a few paths and shell variables needed to use the Nios tools.

39




Utilities

40

nios-build

Description:

Usage:
Options:

Example:

nios-build is a Perl script that invokes the appropriate tools to
compile, assemble, and link Nios source code. It ensures that the
standard C libraries and standard Nios libraries are linked against,
and that the associated “include” paths are available. Most
programs should compile with no command line options at all;
reasonable defaults are in effect

nios-build will produce a file with the base name of the last source
file on the command line, and the suffix “.srec”, ready for
downloading to the GERMS monitor running on the Nios
development board.

Source files are listed on the command line following the options. If
only one source file is specified, nios-build will search the same
directory for files with the same base name, and underscore
extensions.

Files ending with .s or .asm are passed to nios-elf-asm. Files
ending with .c are passed to nios-elf-gcc, and files ending with .o
are passed to nios-elf-Id.

nios-build [options] <sourcefiles. [sco]

-b <base address> :Set base address of code
-mlé6 :Generate code for Nios 16
-m32 :Generate code for Nios 32 (default)

-as <quoted string> :Pass command line options to
assembler
-cc <quoted string> :Pass command line options to

:compiler
-1d <quoted string> :Pass command line options to linker
-d :Set NIOS_GDB=1 and generate
:debug script
-s :Silent mode (only print errors)
-1 <file name> :Include system library
-o <file name> :Output file name
--help :Print help
--help 1 :Print more help

nios-build foo.c bar.s

Multiple files listed in the command line, as shown above, will
generate an executable file named bar.srec

nios-build helloworld.c

If there are files named “helloworld_2.c” and “helloworld_3.s” in the
same directory, they will be included in the build, and the result will
be named helloworld.srec.

Altera Corporation



Utilities

nios-convert

Description:  Perl script that converts files from one format to another. Source
files can be .srec or .mif; destination files can be .mif or .dat.

Destination files will be named the same as the source file if no
destination file name is specified.

Usage: nios-convert [options] <sourceFiles> [destFile]
Options: --lanes=x :break into multiple output files
:lane_0 .. _lane_(x-1) appended
--width=x :set output width to 8, 16, or 32
--oformat=£f :format can be mif or dat
--comments=b :comments in mif file enabled(1l) or
:disabled(0) .
: (default is enabled)
--help
Example: nios-convert bootcode.srec bootcode.mif

Converts file bootcode . srec to bootcode . mif.

nios_csh

Description A startup script that properly sets the C shell environment for
software development using nios-build.

Usage: Source this script from the .login at shell startup time.

Example: source /usr/altera/excalibur/nios-sdk/nios_csh

If the .../altera/ directory is at some location other than /usr/altera,
you must assign that location to the shell variables “altera” as
follows:

set altera = /downloads/altera
source /downloads/altera/excalibur/nios-sdk/nios_bash

Altera Corporation 41



Utilities

42

nios-elf-as

Description:

Usage:
Options:

Nios assembler. Produces a relocatable object file from assembly
language source code. The object file contains the binary code and

debug symbols.

If you use nios-build to generate executable code from assembly
source, nios-elf-as is invoked automatically. It may be useful,
however, to have a working knowledge of the assembler command
line options to help optimize your assembly source code.

nios-elf-as [option...

-a[sub-option...]

Hwn B 3 -5

Il
h
-
[
o

-D

--defsym SYM=VAL
-f

--gstabs

--gdwarf2

--help
-I DIR

-J

-K
-L,--keep-locals
-M, --mri

--MD FILE

-nocpp
-o OBJFILE

-R

--statistics

--strip-local-absolute

[asmfile...]

:turn on listings Sub-options

: [default hls]

:omit false conditionals

:omit debugging directives
:include high-level source
:include assembly

:include macro expansions

:omit forms processing
:include symbols

:include line debug statistics
:set listing file name

: (must be last sub-option)
:produce assembler debugging
:messages

:define symbol SYM to given value
:skip whitespace and comment
:preprocessing

:generate STABS debugging
:information

:generate DWARF2 debugging
:information

:show this message and exit
:add DIR to search list for
:.include directives

:don’t warn about signed
:overflow

:warn when differences altered
:for long displacements

:keep local symbols

:(e.g. starting with ‘L")
:assemble in MRI compatibility
:mode

:write dependency information in
:FILE (default none)

:ignored

:name the object-file output
:OBJFILE (default a.out)

:fold data section into text
:section

:print various measured
:statistics from execution
:strip local absolute symbols

Altera Corporation



Utilities

Altera Corporation

Options
(con’t):

Help:

--traditional-format
--version

-W --no-warn

--warn

--fatal-warnings
--itbl INSTTBL

-w
-X
-Z

--listing-lhs-width

--listing-lhs-width2

--listing-rhs-width

--listing-cont-lines

:use same format as native
:assembler when possible

:print assembler version number
:and exit

:suppress warnings

:don’t suppress warnings

:treat warnings as errors
:extend instruction set to
:include instructions matching
:the specifications defined in
:file INSTTBL

:ignored

:ignored

:generate object file even
:after errors

:set the width in words of the
:output data column of the
:listing

:set the width in words of the
:continuation lines of the
:output data column; ignored
:1f smaller than the width of
:the first line

:set the max width in characters
:0of the lines from the source
:file

:set the maximum number of
:continuation lines used for the
:output data column of the
:listing

NIOS specific command line options:

-mlé6
-m32

:Nios-16 processor (16-bit)
:Nios-32 processor (32-bit)

For more details on using the GNU assembler refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation > Using as (Windows Start Menu).

43




Utilities

nios-elf-gcc

Description:  The GNU compiler invokes the necessary utilities as follows:

cpp
C preprocessor that processes all the header files and macros that
the target requires.

gcc
The compiler that produces assembly language code from the
processed C files.

as
The assembler that produces binary code from the assembly
language source code and puts it in an object file.

Id

The linker that binds the code to addresses, links the startup file and
libraries to the object code, and produces the executable binary
image.

If you use nios-build to generate executable code, nios-elf-gcc is
invoked automatically. It may be useful, however, to have a working
knowledge of the C compiler command line options to help optimize

your C code.
Usage: nios-elf-gcc [options] file..
Options: -pass-exit-codes :Exit with highest error code
:from a phase
--help :Display this information
: (Use ‘-v --help’ to display
: command
:line options of sub-processes)
-dumpspecs :Display all of the built in
:spec strings
-dumpversion :Display the version of the
:compiler
-dumpmachine :Display the compiler’s target
:processor
-print-search-dirs :Display the directories in the

:compiler’s search path
-print-libgcc-file-name :Display the name of the
:compiler’s companion library
-print-file-name=<lib> :Display the full path to
:library <lib>
-print-prog-name=<prog> :Display the full path to
compiler component <progs>
-print-multi-directory :Display the root directory for
:versions of libgcc

44 Altera Corporation



Utilities

Options -print-multi-1ib :Display the mapping between
(con’t): :command line options and

:multiple library search
:directories

-Wa,<options> :Pass comma-separated <optionss>
:on to the assembler

-Wp, <options> :Pass comma-separated <optionss>
:on to the preprocessor

-Wl,<options> :Pass comma-separated <optionsx>
:on to the linker

-Xlinker <args> :Pass <arg> on to the linker

-save-temps :Do not delete intermediate
:files

-pipe :Use pipes rather than
:intermediate files

-time :Time the execution of each
:subprocess

-specs=<file> :Override builtin specs with
:the contents of <file>

-std=<standard> :Assume that the input sources
:are for <standards>

-B <directory> :Add <directorys> to the
:compiler’s search paths

-b <machine> :Run gcc for target <machines,
:1f installed

-V <version> :Run gcc version number
:<version>, if installed

-v :Display the programs invoked
:by the compiler

-E :Preprocess only; do not
:compile, assemble or link

-S :Compile only; do not assemble
:or link

-c :Compile and assemble, but do
:not link

-o <file> :Place the output into <files>

-x <language> :Specify the language of the

:following input files
:Permissable languages include
:c c++ assembler none

:’none’ means revert to the
:default behaviour of guessing
:the language based on the
:file’s extension

Options starting with -g, -f, -m, -O or -W are
automatically passed on to the various sub-processes
invoked by nios-elf-gcc. In order to pass other options
on to these processes the -W<letter> options must be used.
Help: For more details on using the GNU compiler refer to the on-line
documentation by choosingPrograms > Cygwin > Cygwin
Documentation > Using GNU CC (Windows Start Menu).

Altera Corporation 45



Utilities

46

nios-elf-gdb

Description:

Usage:

Options:

The GNU debugger, GDB, lets you see what is going on inside
another program while it executes-or what another program was
doing at the moment it stopped. GDB can do four main kinds of

things to debug software.

B Start the program and specifying anything that might affect its

behavior.

Stop the program based on a set of specific conditions.
Examine what has happened once the program has stopped.

B Change the program to fix bugs and continue testing.

You can use GDB to debug programs written in assembly,

C and C++.

To debug a program using nios-build and nios-elf-gdb, you must do

two things:

1. Add a line with “NIOS_GDB_SETUP” as the first statement in

your main() routine.

2. Use nios-build with the “-d” command line option.

nios-build produces a file with the extention “.gdb”. This file is a
shell script for downloading your program, and then running nios-

elf-gdb.

--[nolasync
-b BAUDRATE

--batch
--cd=DIR
--command=FILE
--core=COREFILE
--dbx
--directory=DIR
--epoch

--exec=EXECFILE
--fullname

--help
--interpreter=INTERP

- -mapped
--nw
--nx

--quiet

--readnow

:Enable (disable) asynchronous
:version of CLI

:Set serial port baud rate used
:for remote debugging.

:Exit after processing options.
:Change current directory to DIR.
:Execute GDB commands from FILE.
:Analyze the core dump COREFILE.
:DBX compatibility mode.

:Search for source files in DIR.
:Output information used by epoch
:emacs-GDB interface.

:Use EXECFILE as the executable.
:Output information used by
:emacs-GDB interface.

:Print this message.

:Select a specific
:interpreter/user interface

:Use mapped symbol files if
:supported on this system.

:Do not use a window interface.
:Do not read gdb.ini file.

:Do not print version number on
:startup.

:Fully read symbol files on first
:access.

Altera Corporation



Utilities

Options --se=FILE :Use FILE as symbol file and
(con’t) :executable file.
--symbols=SYMFILE :Read symbols from SYMFILE.
--tty=TTY :Use TTY for input/output by the
:program being debugged.
--version :Print version information and
:then exit.
-w :Use a window interface.
--write :Set writing into executable and
:core files.
--xdb :XDB compatibility mode.

For more information, type “help” from within GDB, or
consult the GDB manual (available as on-line info or a
printed manual) .

Help For more details on using the GNU compiler refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation > Debugging with GDB (Windows Start Menu).

Altera Corporation 47



Utilities

48

nios-elf-ld

Description:

Usage:
Options:

The GNU linker resolves the code addresses and debug symbols,
links the startup code and additional libraries to the binary code,
and produces an executable binary image.

If you use nios-build to generate executable code, nios-elf-Id is
invoked automatically. It may be useful, however, to have a
working knowledge of the linker command line options.

nios-elf-1d [options] file..

-a KEYWORD :Shared library control
:for HP/UX compatibility

-A ARCH, --architecture ARCH :Set architecture

-b TARGET, --format TARGET :Specify target for
:following input files

-c FILE, --mri-script FILE :Read MRI format linker
:script

-d, -dc, -dp :Force common symbols to
:be defined

-e ADDRESS, --entry ADDRESS :Set start address

-E, --export-dynamic :Export all dynamic
:symbols

-EB :Link big-endian objects

-EL :Link little-endian
:objects

-f SHLIB, --auxiliary SHLIB :Auxiliary filter for

:shared object symbol
:table objects

-F SHLIB, --filter SHLIB :Filter for shared object
:symbol table

-g :Ignored

-G SIZE, --gpsize SIZE :Small data size (if no

:size, same as --shared)
-h FILENAME, -soname FILENAME :Set internal name of
:shared library

-1 LIBNAME, --library LIBNAME :Search for library
: LIBNAME
-L DIRECTORY, --library-path DIRECTORY

:Add DIRECTORY to library
:search path

-m EMULATION :Set emulation

-M, --print-map :Print map file on
:standard output

-n, --nmagic :Do not page align data

-N, --omagic :Do not page align data,
:do not make text read
:only

-o FILE, --output FILE :Set output file name

-0 :Optimize output file

-Qy :Ignored for SVR4
:compatibility

-r, -i, --relocateable :Generate relocateable
:output

Altera Corporation



Utilities

Options -R FILE, --just-symbols FILE :Just link symbols (if
(con't): :directory, same as

:--rpath)

-s, --strip-all :Strip all symbols

-S, --strip-debug :Strip debugging symbols

-t, --trace :Trace file opens

-T FILE, --script FILE :Read linker script

-u SYMBOL, --undefined SYMBOL :Start with undefined
:reference to SYMBOL

-Ur :Build global
:constructor/destructor
:tables

-v, --version :Print version
:information

-V :Print version and
:emulation information

-x, --discard-all :Discard all local symbols

-X, --discard-locals :Discard temporary local
:symbols

-y SYMBOL, --trace-symbol SYMBOL
:Trace mentions of SYMBOL

-Y PATH :Default search path for
:Solaris compatibility

-z KEYWORD :Ignored for Solaris
:compatibility

-(, --start-group :Start a group

-), --end-group :End a group

-assert KEYWORD :Ignored for SunOS
:compatibility

-Bdynamic, -dy, -call_shared :Link against shared
:libraries

-Bstatic, -dn, -non_shared, -static
:Do not link against
:shared libraries

-Bsymbolic :Bind global references
:locally
--check-sections :Check section addresses
:for overlaps (default)
--no-check-sections :Do not check section
:addresses for overlaps
--cref :Output cross reference
:table
--defsym SYMBOL=EXPRESSION :Define a symbol
--demangle :Demangle symbol names
--dynamic-linker PROGRAM :Set the dynamic linker
:to use
--embedded-relocs :Generate embedded relocs
--errors-to-file FILE :Save errors to FILE
:instead of printing to
:stderr
-fini SYMBOL :Call SYMBOL at
:unload-time
--force-exe-suffix :Force generation of file
:with .exe suffix
--gc-sections :Remove unused sections

: (on some targets)

Altera Corporation 49



Utilities

50

Options
(con’td):

--no-gc-sections
--help

-init SYMBOL
-Map FILE
--no-demangle
--no-keep-memory
--no-undefined

--no-warn-mismatch

--no-whole-archive
--noinhibit-exec

--oformat TARGET

-gmagic

--relax
--retain-symbols-file FILE
-rpath PATH

-rpath-link PATH

-shared, -Bshareable
--sort-common

--split-by-file
--split-by-reloc COUNT
--stats

--task-link SYMBOL
--traditional-format

-Tbss ADDRESS
-Tdata ADDRESS
-Ttext ADDRESS
--verbose

--version-script FILE

:Don’t remove unused
:sections (default)
:Print option help

:Call SYMBOL at load-time
:Write a map file

:Do not demangle symbol
:names

:Use less memory and more
:disk I/O

:Allow no undefined
:symbols

:Don’t warn about
:mismatched input files
:Turn off --whole-archive
:Create an output file
:even if errors occur
:Specify target of output
:file

:Ignored for Linux
:compatibility

:Relax branches on
:certain targets

:Keep only symbols listed
:in FILE

:Set runtime shared
:library search path

:Set link time shared
:library search path
:Create a shared library
:Sort common symbols by
:size

:Split output sections for
:each file

:Split output sections
:every COUNT relocs
:Print memory usage
:statistics

:Do task level linking
:Use same format as
:native linker

:Set address of .bss

:section
:Set address of .data
:section
:Set address of .text
:section

:Output lots of
:information during link
:Read version information
:script

--version-exports-section SYMBOL

- -warn-common

:Take esport symbols list
:from .exports, using
:SYMBOL as the version.
:Warn about duplicate
:common symbols

Altera Corporation



Utilities

Options --warn-constructors :warn if global
(con’td): :constructors/destructors
:are seen
--warn-multiple-gp :Warn if the multiple GP
:values are used
--warn-once :Warn only once per
:undefined symbol
--warn-section-align :Warn if start of section
:changes due to alignment
--whole-archive :Include all objects from
:following archives
--wrap SYMBOL :Use wrapper functions
:for SYMBOL
--mpc860cO0 [=WORDS] :Modify problematic

:branches in last WORDS
:(1-10, default 5) words
:0f a page

nios-elf-1d: supported targets:
elf32-nios
elf32-1little
elf32-big
srec
symbolsrec
tekhex
binary
ihex

nios-elf-1d: supported emulations:
elfnioslé
elfnios32

nios-elf-1d: emulation specific options:
no emulation specific options.

Help: For more details on using the GNU linker refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation > Using Id (Windows Start Menu).

Altera Corporation 51



Utilities

52

nios-elf-nm

Description:

Usage:
Options:

Example:

Help:

Lists public symbols and their values from object files.
nios-elf-nm [options] [file...]

[-aABCDglnopPrsuvV]
[-t radix]
[--radix=radix]
[--target=bfdname]
[--debug-syms]
[--extern-only]
[--print-armap]
[--print-file-name]
[--numeric-sort]
[--no-sort]
[--reverse-sort]
[--size-sort]
[--undefined-only]
[--portability]

[-f {bsd,sysv,posix}]
[--format={bsd, sysv,posix}]
[--demangle]
[--no-demangle]
[--dynamic]
[--defined-only]
[--1line-numbers]
[--version]
[--help]

nios-elf-nm hello world.out > hello world.nm

Creates a file hello world.nm that contains a list of all symbols
in the program.

hello_world.out:

000406b0 t CWPOverflowTrapHandler
000405fc t CWPUnderflowTrapHandler
000402d6 T PrivatePrintf

00040244 T RAMLimit

00040ae8 A _ bss_start

000408ca T _ divsi3
000408fc T _ modsi3
00040796 T _ mulhi3
00040796 T _ mulsi3
00000001 a _ nios32__

For more details on using the GNU linker refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation > Using binutils > nm (Windows Start Menu).

Altera Corporation



Utilities

Altera Corporation

nios-elf-objcopy

Description:

Usage:
Options:

Utility that converts executable binary files (.out) to S-records,
which are suitable for ROM images and for download images to

embedded systems.

If you use nios-build to generate executable code nios-elf-objcopy

is invoked automatically.

nios-elf-objcopy <switches> in-file [out-file]

-I <bfdname>
-0 <bfdname>
-F <bfdname>
--debugging
-p

-j <name>

-R <name>

-S

-9
--strip-unneeded

-N <name>
-K <name>
-L <name>

-W <name>

--weaken

-1 <number>

-b <num>

--gap-fill <vals>
--pad-to <addr>
--set-start <addr>
--change-start <incr>

--change-addresses <incr>

:Assume input file is in
:format <bfdname>

:Create an output file in
:format <bfdname>

:Set both input and output
:format to <bfdname>
:Convert debugging
:information, if possible
:Copy modified/access
:timestamps to the output
:Only copy section <name>
:into the output

:Remove section <name> from
:the output

:Remove all symbol and
:relocation
:Remove all debugging symbols
:Remove all symbols not needed
:by relocations

:Do not copy symbol <names>
:0nly copy symbol <name>

:Force symbol <name> to be
:marked as a local

:Force symbol <name> to be
:marked as a weak

:Force all global symbols to
:be marked as weak

:Remove all non-global symbols
:Remove any compiler-generated
:symbols

information

:Only copy one out of every
:<number> bytes

:Select byte <num> in every
:interleaved block

:Fill gaps between sections
:with <vals>

:Pad the last section up to
:address <addr>

:Set the start address to
:<addr>

:Add <incr> to the start
:address

:Add <incr> to LMA, VMA and
:start addresses

53




Utilities

54

Options
(cont'd):

Help:

--change-section-address <name>{=|+|-}<val>
:Change LMA and VMA of
:section <name> by <vals>
--change-section-1lma <names>{=|+|-}<val>
:Change the LMA of section
:<name> by <vals>
--change-section-vma <names>{=|+|-}<val>
:Change the VMA of section
:<name> by <vals>
-- [no-]change-warnings :Warn if a named section
:does not exist
--set-section-flags <name>=<flags>
:Set section <names’s
:properties to <flags>
--add-section <name>=<file> :Add section <name> found
:in <file> to output

--change-leading-char :Force output format’s
:leading character style

--remove-leading-char :Remove leading character
:from global symbols

--redefine-sym <old>=<new> :Redefine symbol name <oldx>
:to <new>

-v --verbose :List all object files
:modified

-V --version :Display this program’s
:version number

-h --help :Display this output

For more details on using the GNU linker refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation > Using binutils > objcopy (Windows Start
Menu).

Altera Corporation



Utilities

Altera Corporation

nios-elf-objdump

Description:

Usage:
Options:

Displays information about one or more object files. The options
control what particular information to display. This can be very
useful if a user is not sure where their routines are being located, or
are wondering what kind of code the compiler is producing.
nios-elf-objdump <switches> file(s)

At least one of the following switches must be given:

-a --archive-headers :Display archive header
:information

-f --file-headers :Display the contents of the
:overall file header

-p --private-headers :Display object format specific
:file header contents

-h --[section-lheaders :Display the contents of the
:section headers

-x --all-headers :Display the contents of all
:headers

-d --disassemble :Display assembler contents of
:executable sections

-D --disassemble-all :Display assembler contents of
:all sections

-S --source :Intermix source code with
:disassembly

-s --full-contents :Display the full contents of
:all sections requested

-g --debugging :Display debug information in
:object file

-G --stabs :Display the STABS contents of
:an ELF format file

-t --syms :Display the contents of the
:symbol table(s)

-T --dynamic-syms :Display the contents of the
:dynamic symbol table

-r --reloc :Display the relocation entries
:inthe file

-R --dynamic-reloc :Display the dynamic relocation
:entries in the file

-V --version :Display this program’s version
:number

-i  --info :List object formats and
:architectures supported

-H --help :Display this information

The following switches are optional:

-b --target <bfdname> :Specify the target object
:format as <bfdnamex>

-m --architecture <machinex
:Specify the target
:architecture as <machine>

-j --section <namex> :0nly display information for
:section <namex>

55




Utilities

56

Options
(cont'd):

Example:

-M --disassembler-options <o>
:Pass text <o> on to the
:disassembler section

-EB --endian=big :Assume big endian format when
:disassembling

-EL --endian=1little :Assume little endian format
:when disassembling

--file-start-context :Include context from start of
:file (with -S)

-1 --line-numbers :Include line numbers and
:filenames in output

-C --demangle :Decode mangled/processed
:symbol names

-w --wide :Format output for more than
:80 columns

-z --disassemble-zeroes :Do not skip blocks of zeroes
:when disassembling

--start-address <addr> :0Only process data whose
:address is >= <addrs>

--stop-address <addrs> :Only process data whose
:address is <= <addrs>

--prefix-addresses :Print complete address
:alongside disassembly

-- [no-]1show-raw-insn :Display hex alongside symbolic
:disassembly

--adjust-vma <offset> :Add <offset> to all displayed

:section addresses

nios-elf-objdump: supported targets:
elf32-nios
elf32-little
elf32-big
srec
symbolsrec
tekhex
binary
ihex

nios-elf-objdump -D hello world.out > hello_world.objdump

Disassembles the object file hello world.out and creates a
disassembly output file hello world.objdump as shown below:

hello_world.out: file format elf32-nios
Disassembly of section .text:

00040100 <nr_jumptostarts:

40100:06 98 pfx %$hi (0xc0)
40102:40 35 movi %g0, Oxa
40104:00 98 pfx %hi (0x0)
40106:40 6¢C movhi %g0,0x2
40108:c0 7f jmp %90
4010a:00 30 nop

4010c:4e 69 extléed %$sp, %02
4010e:6f 73 *unknown#*

Altera Corporation



Utilities

Example 00040110 <mains>:

(confdy 40110:17 78 save %sp, 0x17
40112:4a 98 pfx %hi (0x940)
40114:88 35 movi %00, 0xc
40116:00 98 pfx %hi (0x0)
40118:88 6¢ movhi %00, 0x4
4011a:04 98 pfx %hi (0x80)
4011lc:al 36 movi %gl, 0x15
4011e:00 98 pfx %hi (0x0)
40120:41 6c movhi %gl,0x2
40122:el1 7f call %gl
40124:00 30 nop
40126:df 7f ret
40128:a0 7d restore

Help: For more details on using the GNU linker refer to the on-line

documentation by choosing Programs > Cygwin >Cygwin
Documentation > Using binutils > objdump (Windows Start
Menu).

Altera Corporation 57



Utilities

nios-elf-size

Description:

Usage:
Options:

Help:

nios-run

Description:

Usage:
Options:
Example:

srec2flash

Description:

Usage:

58

This tool takes any number of “.out”, “.0”, or “.a” files, and produces
a report of the sizes for code (text), data (data), and uninitialized
storage (bss).

nios-elf-size [options] [file...]

[-ABdoxV]

[--format=berkeley|sysv] :default is --
format=berkeley

[--radix=8|10]|16]

[--target=bfdname]

[--version]

[--help]

For more details on using the GNU linker refer to the on-line
documentation by choosing Programs > Cygwin > Cygwin
Documentation > Using binutils > size (Windows Start Menu).

Download code to Nios development board and perform terminal
1/0.

nios-run [option(s)] [filenamel

nios-run -p com2 hello world.srec

Downloads the executable file hello_world.srec to the development
board via COM2.

The GERMS monitor looks for code in flash memory at location
0x140000. If found, the code is executed.

The srec2flash utility takes code targeted for location 0x40100
(SRAM) and prepends a routine to copy itself from 0x140100
(FLASH) to 0x40100 (SRAM).

It also prepares the file to be written to Flash by prepending the
necessary GERMS monitor commands to write the file into flash.

srec2flash [options] <srec file> [filename]

Altera Corporation



Utilities

Altera Corporation

Example:

Srec2flash hello_world.srec
Generates the file hello world. flash (partial listing below):

# This file generated by srec2flash, part of
# the Nios SDK. This file contains a short

# program to run out of flash memory which

# copies the main program down to RAM, and

# executes it there.
#
#
#
#

Original file: hello_world.srec

Loader program

# Erase flash sector 140000

#

# This address is checked by germsMon at startup

#

el140000

#
S219140000009800350098406DCO07F00304E696F73089810349044
S2191400156E1134116F08981234926C005A50048074015A500455
S21914002A8174011E0140415E92043012E27EF387003021981009
S21914003F340098106CB2993135115E08981234926C3224D27FA0
S206140054003061

#

# Main program

#

r40100-140100
S013000068656C6C6F5F776F726C642E7372656376
S219040100069840350098406CCO07F00304E696F7317784A988889
S219040115350098886C0498A1360098416CEL7F0030DF7FA07D48
S21904012A17781298D95F1398DA5F1498DB5F1598DC5F1698DD09
S21904013F5F0833169849370098496CCB3302980B050B986135AC

'i'o burn FLASH on the development board use the nios-run utility
as follows:

nios-run -x hello_world.flash

59




Utilities

oot

Notes:

60 Altera Corporation



A\ [

Appendix

- |
®
Appendix A:
Command
Summary
GERMS Monitor Syntax Monitor Description

G<base address> G40000 GO - Execute a CALL instruction to the specified
address.

E<base address> E180000 Erase flash memory. If the address is within the range
of the “flash” ROM, the sector containing that address
will be erased.

R<from address>-<to address> | R0-180000 Offset the next download. The next S-record or I-Hex
record downloaded will be stored offset by the range
specified.

M<address> M50000 Display memory starting from the address.

M<address>-<address>

M40000-40100

Display a range of memory. Pressing <CR> again will
show the same number of bytes, starting where the
last M command ended.

M<address>:<value> <value>...

M50000:12 3 4

Write successive 16-bit words to memory, until the
end of line.

M<address>-<address>:<value>

M50000-50100:AA55

Fill a range of memory with a 16-bit word.

<CR>

<CR>

Display the next 64 bytes of memory.

S<S-record data> S$21840000 . . . Write S-record to next memory location
:<I-hex record data> :80000004 . . . Write I-hex record to next memory location.
<ESC> <ESC> Restart the monitor.

Altera Corporation

61




Appendix

Nios-Build
Usage: nios-build [options] files.[sco]
Example: nios-build hello.c

Command Line Description

Options

-b <base address> Override the standard base address of code.
-m16 Generate code for Nios 16
-m32 Generate code for Nios 32 (default)

-as <quoted string> Pass quoted string as command line options to assembler
-cc <quoted string> Pass quoted string as command line options to compiler
-Id <quoted string> Pass quoted string as command line options to linker

Nios-Run

Usage: nios-run [option(s)] [filename]

Example: nios-run -p com2 hello_world.srec

Command Line Description
Options

-b <baud-rate> sets the serial port baud rate (default = 115200)

-d provides additional debugging information during
download

-0 <seconds> quit after <seconds> seconds in terminal mode

-p <port-names specifies serial port (default = COM1:)

-s <millisecss> specifies a per-character delay (useful for
reluctant flash)

-t enters terminal mode without downloading code

-X exit immediately after downloading code

-z shows timestamp for each line, useful for

benchmarking

62 Altera Corporation



Appendix

Appendix B:
Assembly
Language
Macros

Altera Corporation

The file nios_macros.s, located in the .../inc/ directory, provides a
number of assembly language macros useful for low level programming
and debugging. For details on assembly language programming, refer to
the Nios Embedded Processor Programmer’s Reference Manual.

Macro

Description

MOVIP %reg,value

MOVIP acts similarly to the Nios instruction MOVI, but
allows any size constant. It automatically uses a
combination of BGEN, MOVI, MOVHI, and PFX to load
the value into the register.

MOVIP will use as few instructions as possible (of those
above) to load the value into the register.

MOVIP can only be used with defined constants; it will
generate an error if the constant is not defined at
assembly time.

MOVIA %reg,value

Load a native-sized value into the register. The native
word size is 16 or 32 bits; 16-bit or 32-bit Nios CPU,
respectively. The value need not be defined at assembly
time; the linker will fill in the value later.

ADDIP %reg,value

ADDIP acts similarly to ADDI, but will work for any 16-bit
constant. It will not work for constants greater than 16 bits.

SUBIP %reg,value

SUBIP acts similarly to SUBI, but will work for any 16-bit
constant. It will not work for constants greater than 16 bits.

CMPIP %reg,value

CMPIP acts similarly to CMPI, but will work for any 16-bit
constant. It will not work for constants greater than 16 bits.

ANDIP %reg,value

ANDIP acts similarly to ANDI, but will work for any 16-bit
constant. It will not work for constants greater than 16 bits.

ANDNIP %reg,value

ANDNIP acts similarly to ANDNI, but will work for any
16-bit constant. It will not work for constants greater than
16 bits.

ORIP %reg,value

ORIP acts similarly to ORI, but will work for any 16-bit
constant. It will not work for constants greater than 16 bits.

_BR address

_BR acts similarly to BR, but uses %g7 to load the target
address. The target address is therefore not limited to the
short branch range.

_BSR address

_BSR acts similarly to BSR, but uses %g7 to load the
target address. The target address is therefore not limited
to the short branch range.

nm_print string

Prints the quoted string to the default UART. Uses %00
and %g registers.

63




Appendix

64

Macro

Description

nm_printin string

Exactly like nm_print, but prints the string followed by a
carriage return and line feed.

nm_d_txchar char

This macro expands out to a large block of code that
transmits a character to the default UART without altering
any registers, or requiring the CWP to move. It does use
stack space.

Because this macro does not affect any registers or the
CWP, it can be very useful for debugging interrupt
handlers and low-level services, such as task switchers.

nm_d_txreg
chari,char2,%reg

This macro expands out to a rather large block of code
which transmits the two characters, followed by a the
hexadecimal value of the register. It will print erroneous
values for the stack pointer register.

Because this macro does not affect any registers or the
CWP, it can be very useful for debugging interrupt
handlers and low-level services, such as task switchers.

Altera Corporation




	Contents
	Nios Embedded Processor Software Development Reference Manual
	How to Contact Altera
	Typographic Conventions
	Introduction
	Project Considerations
	Development Flow
	Step 1: Define the Processor
	Step 2: Build the Processor
	Step 3: Save the Processor Configuration to FLASH
	Step 4: Create the Application Code
	Step 5: Download the Executable Code
	Step 6: Debug the Code
	Step 7: Transition to Auto-Booting Code
	Step 8: Transition Design From Nios Development Board to Target Hardware


	GERMS Monitor
	Monitor Commands
	Boot Process
	Booting From Flash Memory

	Overview Of The SDK Tree
	The Include ("inc") Directory
	The Library ("lib") Directory

	Nios Program Structure
	Nios Library Routines
	C Runtime Support
	System-Level Services
	Interrupt Service Routine Handler
	Current Window Pointer Manager
	General-Purpose System Routines


	High-Level C Support
	Nios Peripheral Routines
	Nios PIO
	Nios SPI
	Nios Timer
	Nios UART

	Nios Software Development Utilities
	Appendix A: Command Summary
	Appendix B: Assembly Language Macros


