
Clasp Common Lisp Implementation and Optimization

Alex Wood, Christian E. Schafmeister
Chemistry Department

Temple University
1901 N. 13th Street

Philadelphia, PA, U.S.A 19122
meister@temple.edu

ABSTRACT
We describe implementation strategies and updates made in
the last two years to clasp,[7] a new Common Lisp imple-
mentation that interoperates with C++, uses the Cleavir [8]
compiler, and uses the LLVM backend[5]. Improvements in
clasp have been made in many areas. The most impor-
tant changes are: (1) Tagged pointers and immediate values
have been incorporated. (2) A fast generic function dis-
patch approach has been implemented that allows clasp
to carry out generic function dispatch as fast as SBCL,
a highly optimized free implementation of Common Lisp.
(3) The new LLVM feature “Thin Link Time Optimiza-
tion” has been added, which speeds up generated code by
removing call overhead throughout the system. (4) Type
inference has been added to the Cleavir compiler, which is
part of clasp. Type inference removes redundant run-time
type checks and dead code paths. Type inference currently
provides about a 30% speedup in microbenchmarks.[10] (5)
Constants and literals have been moved close to the code and
“instruction pointer addressing” has been incorporated to
speed access to literals and constants. (6) The generic func-
tion dispatch memoization approach developed by Robert
Strandh[9] is being incorporated and currently shows a 30%
improvement in performance of generic function dispatch.
(7) The overall build time for Clasp has been reduced from
five to eight hours over two years ago to approximately one
hour at present.

Keywords
Common Lisp, clasp, cando, c++, llvm, cleavir

1. INTRODUCTION
We describe implementation strategies and updates made

in the last two years to clasp[7] a new Common Lisp imple-
mentation that interoperates with C++ and uses the LLVM
backend to generate efficient native code for an increasing
variety of processors. clasp is being developed as a sci-
entific programming language and specifically to support

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ELS ’17, April 3 – 6 2017, Brussels, Belgium Copyright is held by the
owner/author(s).

CANDO.[1] CANDO is being designed as a Common Lisp
implementation to support the development of new software
tools for molecular modeling and molecular design and it
extends clasp by adding hundreds of thousands of lines of
C++ and Common Lisp code that implement solutions to
computational chemistry problems. CANDO is designed to
enable interactive programming to develop tools for design-
ing molecules while at the same time generating fast native
code for the demanding chemistry and molecular modeling
applications.

2. TAGGED POINTERS AND MEMORY MAN-
AGEMENT

clasp makes use of pointer tagging to indicate the type of
a pointer, and also encodes some values directly as immedi-
ates. clasp is currently only targeting 64-bit architectures,
and so the following currently applies to the 64-bit imple-
mentation. The type of a pointer is indicated using a three
bit tag in the least significant bits of a 64-bit word. The
meaning of the tags and their current values in binary are
fixnum (#B000 and #B100), general pointer (#B001), char-
acter (#B010), cons (#B011), vaslist (#B101), and single-
float (#B110). #B111 is currently unused.

The immediate types are fixnum, character, and single-
float; they are stored in the high bits of the word. Fixnum
values are 62 bits wide and they are indicated by the value
#B00 in the two least significant bits. This allows fixnum
addition and comparison to be carried out without bit shift-
ing. Character values are 32 bits wide, enough to encode
Unicode.[11] Single-float values are 32 bit wide, IEEE754
format, corresponding to the C++ ’float’ type.

Cons pointers are indicated by the tag value #B011. The
cons itself is two sequential 8-byte words. The consp test is
extremely efficient because the tag is sufficient to indicate a
cons. Traversal of lists thus involves only one tag test per
element, excluding the ultimate element.

Vaslist is a special clasp type used to operate on variable-
length lists of arguments without allocating an actual Lisp
list structure. These can be constructed in Lisp using the
&CORE:VA-REST lambda list keyword, similar to e.g. &MORE
in SBCL. The vaslist itself is a pointer to a structure incorpo-
rating a C/C++ va list structure, together with a count of
arguments remaining. One way we can work with vaslists in
clasp is using the BIND-VA-LIST special operator, which
is analogous to DESTRUCTURING-BIND.

All other general object pointers share the pointer tag
#B001. General objects consist of one header word followed
by data. The header word is used by the garbage collector



to identify the layout of the data, and to determine C++
inheritance relationships to avoid the use of the slow C++
template function “dynamic cast”.

There are four kinds of general objects:

1. Instances of C++ classes. These must inherit from
Clasp’s General O, and have their layouts known to
the garbage collector.

2. Instances of Common Lisp classes, i.e. standard-objects,
funcallable-standard-objects, conditions, and structure-
objects. These are implemented as the C++ class In-
stance O (Table 1). These consist of a ”Signature”
(a description of the object’s slots used for obsolete
instance updating), a pointer to their class, and a
rack of slots. Funcallable instances include more data
(implemented as FuncallableInstance O, Table 2), but
keep the class and rack at the same positions as non-
funcallable instances, to facilitate uniform access.

3. Instances of the C++ Wrapper<T> template class,
which wraps C++ pointers and keeps track of their
types. These can be used as pointers to C++ objects
outside of managed memory, so that such objects can
be operated on from Lisp.

4. Instances of the C++ Derivable<T> template class,
which is used to create Common Lisp classes that in-
herit from C++ classes.

Lisp’s other built in classes, such as symbols, complex
numbers, and arrays, are implemented as C++ classes, i.e.
the first kind.

Because the header does not include information about
Lisp classes, among other things, it is not totally sufficient
for Lisp type checking. It can however be used for rapid
discrimination of instances of built in classes.

General objects and conses are stored on the heap and
managed by the memory manager. clasp can be built to
use one of two automatic memory management systems: the
Boehm garbage collector[2], or the Memory Pool System
(MPS)[6].

Boehm is a conservative collector originally designed for C
programs, meaning that it treats objects as opaque blobs of
memory, identifies memory words as pointers without using
type information, and does not move objects. This allows
it to allocate and collect quickly, but as it does not com-
pact memory it can leave the heap fragmented, impacting
long-running clasp programs and ones that allocate large
objects.

The Boehm build of clasp is required to run a special
C++ static analyzer, written in clasp, that determines
memory layouts for all C++ classes in the clasp C++
source.

The Memory Pool System is a precise collector more suit-
able for Lisp. It requires information per-type about where
pointers are located; this is derived from the static ana-
lyzer, indexed using the general object headers. MPS can
move and compact memory, using the least significant two
bits of the header word to indicate forwarding pointers and
padding. The MPS will run in a fixed memory footprint,
making it suitable as the default memory manager for clasp
for scientific programming.

Table 1: Memory layout of Instance O.

Offset C++ type Field
0 T sp Signature
8 Class sp Class
16 SimpleVector sp Rack

Table 2: Memory layout of FuncallableInstance O.

Offset C++ type Field
0 std::atomic<claspFunction> entry
8 Class sp Class
16 SimpleVector sp Rack
24 std::atomic<T sp> CallHistory
32 std::atomic<T sp> SpecializerProfile
24 std::atomic<T sp> DispatchFunction

3. ARRAYS
Common Lisp vectors and arrays are implemented using

the structures shown (Table 3 and Table 4). The TYPE of
a simple vector can be specialized within the Clasp C++
code to be any C++ type or class. The types that are
currently supported are T sp (the general Common Lisp T
type), fixnum, double, float, and signed and unsigned integer
types of length 8, 16, 32 and 64 bits. Simple bit vectors are
implemented by manipulating bits in unsigned 32 bit words.
The offset of the Length field in simple vectors and the Fill-
PointerOrLengthOrDummy field of complex arrays is the
same so that the length or fill-pointer can be accessed quickly
for both simple and complex vectors. For multi-dimensional
arrays FillPointerOrLengthOrDummy is ignored. The Flags
field stores whether the array has ARRAY-FILL-POINTER-
P and whether the array is displaced.

Array operations can be complex, and they are inlined for
both simple vector and complex array operations. clasp
does this by undisplacing the array to the range of mem-
ory of the simple vector that ultimately stores the array
contents and then indexes into that simple vector. Inlining
is performed for SVREF, ROW-MAJOR-AREF, SCHAR,
CHAR, ELT and AREF.

4. FAST GENERIC FUNCTION DISPATCH
clasp implements the fast generic function dispatch ap-

proach developed by Robert Strandh.[9] Fast generic func-
tion dispatch is important in clasp because it uses the
Cleavir compiler (also written by Robert Strandh)[8], which
makes heavy use of generic functions in its operation.

To enable the dispatch technique, all objects have a 64-

Table 3: Memory layout of simple vectors, the SimpleVec-
tor O class.

Offset C++ type Field
0 size t Length
8 TYPE Data[length]



Table 4: Memory layout of complex arrays, the MDArray O
class.

Offset C++ type Field
0 size t FillPointerOrLengthOrDummy
8 size t ArrayTotalSize
16 Array sp Data
24 size t DisplacedIndexOffset
32 Flags Flags
40 size t Rank
48 size t Dimensions[Rank]

Table 5: Generic function call time.

Implementation gf call (s) accessor call (s)
Clasp(553e35a) 1.34 1.14
SBCL(1.3.10) 1.36 1.14
ECL(16.0.0) 27.24 7.26
ccl(1.11-store-r16714) 3.82 3.65

bit value called the stamp, unique to the class it was defined
with. For general objects, the stamp is within the header
word for instances of C++ classes, but it is stored within
the object otherwise.

The fast generic function dispatch approach works by com-
piling discriminating functions that dispatch to precompiled
effective methods based on the stamps of their arguments
(Figure 1). This reduces discrimination to a series of inte-
ger comparisons, making it very efficient. The “slow path”
of dealing with actual classes and calling the MOP-specified
generic functions only comes into play if the integer compar-
isons fail to branch to a known effective method.

If a Lisp class is redefined, its stamp is changed and exist-
ing discriminators have their dispatching for the old stamp
removed. Calls to discriminators involving obsolescent in-
stances can therefore update instances only in the slow path.
This in particular, is a major improvement over ECL, which
checks object obsolescence for all calls to accessors.

clasp incorporates a small extension to the dispatch tech-
nique. Calls involving EQL specializers cannot be memoized
normally, because they imply the necessity of tests more spe-
cific than stamp tests. However, clasp does memoize some
calls involving EQL specializers, for standard generic func-
tions that cannot have more behavior on them due to MOP.
The critical condition is that any argument in an EQL-
specialized position does match an EQL-specialized method,
and not only class-specialized methods. For example, if a
generic function of one parameter has one method special-
ized on the symbol class, and one EQL-specialized on a par-
ticular symbol, calls involving the latter will be memoized
while the former will not be. This speeds the most common
uses of EQL specializers while preserving correctness.

In a test where two generic functions that accept two ar-
guments were called 100,000,000 times - the timing values
(in seconds) were obtained (Table 5).

The performance is remarkable given that clasp started
out using the ECL CLOS source code and reimplemented
the ECL generic function dispatch cache. With the Strandh
fast generic function dispatch, clasp is equivalent to the
performance of SBCL, a highly optimized implementation

of Common Lisp.
There is a“warm-up”time associated with this fast generic

function dispatch method as it is currently implemented
within clasp. Discriminating functions are compiled lazily
when the generic function is called and the first compilation
forces a cascade of compilation of about 1,200 functions.
This takes tens of seconds of real time. This only happens
once at startup and thereafter discriminating functions are
invalidated and recompiled only when methods are added or
removed or classes are redefined.

5. COMMON FOREIGN FUNCTION INTER-
FACE

clasp has now incorporated an implementation of the
Common Foreign Function Interface (CFFI). This gives it
access to many C libraries that have been exposed to Com-
mon Lisp using CFFI. This is in addition to clasp’s built
in C++ interoperation facility clbind.

6. LINK TIME OPTIMIZATION
A new LLVM feature called “Link Time Optimization”

(LTO) has been incorporated into clasp. With LTO, all
code that is compiled with COMPILE-FILE and all of the
clasp C++ code is compiled to the LLVM intermediate rep-
resentation (LLVM-IR) and written to files as LLVM “bit-
code”. The link stage of building then does a final round
of optimization, wherein LLVM-IR from Common Lisp code
and LLVM-IR from C++ code for internal functions with
symbols that are not exported are inlined within each other
and those that are not inlined are converted to the “fastcc”
calling convention, which passes arguments as much as pos-
sible in registers. The overall effect is to reduce the overhead
of calls within clasp.

7. C CALLING CONVENTION
Currently, clasp only supports the x86-64 Application

Binary Interface (ABI) because it makes non-portable ref-
erences to x86-64 ABI C calling convention details to im-
prove performance. The key detail that is important is
that the x86-64 C calling convention passes up to six in-
teger word arguments in registers and returns up to two
integer word arguments in registers and this used by clasp
to use registers as much as possible when making function
calls. clasp passes arguments with the following C calling
signature: (void* closure, size t number-of-arguments, void*
arg0, void* arg1, void* arg2, void* arg3, ...). So, up to four
general objects are passed in registers and when the lambda
list for a function uses &rest or &key arguments then the
ABI details of C calling convention “var-args” facility is used
to spill the register arguments into a register save area on
the stack. A C va list is then “rewound” to point to the arg0
argument so that all arguments can be accessed one at a
time using the clasp “vaslist” facility.

8. INSTRUCTION POINTER ADDRESSING
clasp uses the LLVM library, which defines C++ classes

for Modules, Functions, BasicBlocks, Instructions and Glob-
alVariables. Code generated by LLVM cannot currently be
managed by the memory manager and must live outside of
the managed memory space, at fixed locations. Functions



Figure 1: A generic function specialized on two arguments. The left box represents stamp values that are matched to the
first argument stamp and the right boxes represent stamp values matched to the second argument depending on the first
argument.

Start
259;SYMBOL

296;SIMPLE-BASE-STRING

HIT-#<EMF :ptr 0x111a4e5d8>

HIT-#<EMF :ptr 0x1119f1ba8>

341;SINGLE-FLOAT

347;FIXNUM

HIT-#<EMF :ptr 0x111af52a8>

HIT-#<EMF :ptr 0x111ab2f38>

341;SINGLE-FLOAT

347;FIXNUM

therefore accumulate in memory as clasp runs. Memory de-
pletion has not been a problem because modern computer
memories are large, but it does make referencing Common
Lisp objects from LLVM generated code problematic. To
deal with this, each LLVM module has a block of garbage
collector roots. These roots point to all non-immediate con-
stants referenced by the functions in the module. These
constants can then exist in memory managed space without
being collected inappropriately.

9. STACK UNWINDING
Stack unwinding is achieved in clasp using C++ excep-

tion handling to allow clasp to inter-operate with C++
code. C++ stack unwinding on x86-64 uses the Itanium
ABI Zero-cost Exception Handling.[4] It is “Zero-cost” in
that there is no runtime cost when it is not used but ac-
tual unwinding the stack is quite expensive. Timing of a
simple CATCH/THROW pair demonstrates that unwinding
the stack in Clasp is about 90x slower than it is in SBCL
and thus stack unwinding must be done judiciously.

10. INLINING OF ARITHMETIC FUNCTIONS
Arithmetic can now be done without function calls in com-

mon cases. When the operands to a binary operation such as
addition are of the same kind - fixnum, single float, or double
float - the operation is carried out without a function call.
This also occurs if one operand can be easily coerced to a
value of the other type, e.g., a fixnum plus single float oper-
ation becomes a single float plus single float operation once
a single float corresponding to the fixnum value is produced.

Facilities are now in place to deal with unboxed values.
These are special register values, outside of the normal man-
aged memory regime, representing number values. For ex-
ample, even though 64-bit floats cannot be immediates due
to lacking space for a tag, they can be dealt with as un-
boxed values. Inlined arithmetic essentially consists of ”un-
boxing” values (e.g. extracting double floats from memory),
performing machine arithmetic operations, and then boxing
the results. A future compiler stage will remove unboxing
operations followed immediately by boxing operations, as
are done for arithmetic operations using the results of other
operations as operands.

Arithmetic involving nontrivial allocations, such as on
bignums or complex numbers, still goes through function

Figure 2: A flame graph generated by profiling clasp re-
peatedly calling MAKE-INSTANCE. 19.7% of the time is
spent in SHARED-INITIALIZE and 27.2% of the time is
consumed by the memory manager.

calls.

11. PROFILING
Since all clasp Common Lisp and C++ code compiles

to LLVM-IR, all functions look like standard C functions to
standard profiling tools. This allows standard tracing tools
like “dtrace”[3] to be used to profile clasp code (Figure 2).

12. SOURCE TRACKING
clasp has incorporated source tracking using facilities

from the Sicl project. clasp makes extensive use of the
nascent Sicl project, including the Cleavir compiler, and
the Sicl reader. The Cleavir compiler has recently been
upgraded to generate “Abstract Syntax Trees” (AST) from
“Concrete Syntax Trees” (CST). CST’s are a representation
of Common Lisp source code that has source location infor-
mation attached to every atomic token and every list. One of
the purposes of this is to carry source code location informa-
tion into the AST and then all the way to the final generated
machine code to facilitate debugging. Other applications for
CST’s include: tools that carry out source-to-source trans-
lation and programming tools like syntax highlighting.

13. DEBUGGING USING DWARF
clasp generates DWARF debugging information using

the DIBuilder API of the LLVM C++ library. This will



allow clasp compiled programs to be inspected and de-
bugged using the industry standard debuggers “gdb” and
“lldb”. DWARF debugging information is used by these
debuggers to provide information about source line infor-
mation and the locations of variables in stack frames. The
DWARF source line information that will be generated with
the aid of source tracking information provided by Concrete
Syntax Trees will greatly facilitate debugging. The uniform
use of DWARF debugging information for Common Lisp and
C++ code will allow the debugging of clasp programs that
make use of C++, C and Fortran libraries.

14. CONCLUSIONS AND FUTURE WORK
clasp is a new implementation of Common Lisp that in-

teroperates with C++ and uses the LLVM library as a back-
end. It supports novel interoperation features with C++ li-
braries and industry standard profiling and debugging tools.
clasp incorporates the Cleavir compiler that is a platform
for exploring new ideas in compiling dynamic languages.

15. ACKNOWLEDGMENTS
We want to thank professor Robert Strandh for his con-

stant patience and guidance which made this work possible.

16. REFERENCES
[1] Schafmeister, C. E. “CANDO - a Compiled

Programming Language for Computer-Aided
Nanomaterial Design and Optimization Based on
Clasp Common List” (2016): 75âĂŞ82.

[2] Boehm, H. “Simple Garbage-Collector-Safety”,
Proceedings of the ACM SIGPLAN ’96 Conference
on Programming Language Design and
Implementation.

[3] http://dtrace.org/blogs/about/

[4] http://itanium-cxx-abi.github.io/cxx-abi/abi-
eh.html

[5] Lattner, C. (2005) “Masters Thesis: LLVM: An
Infrastructure for Multi-Stage Optimization”,
Computer Science Dept., University of Illinois at
Urbana-Champaign, http://llvm.cs.uiuc.edu

[6] Richard Brooksby. (2002) “The Memory Pool
System: Thirty person-years of memory
management development goes Open Source.”
ISMM02.

[7] Schafmeister, C. (2015) “CANDO - A Compiled
Programming Language for Computer-Aided
Nanomaterial Design and Optimization Based on
Clasp Common Lisp”, European Lisp Symposium,
2015.

[8] https://github.com/robert-
strandh/SICL/tree/master/Code/Cleavir

[9] Strandh, R. (2014). “Fast generic dispatch for
Common Lisp”, Proceedings of ILC 2014 on 8th
International Lisp Conference - ILC 14.
doi:10.1145/2635648.2635654

[10] Wood, A. (2017). “Type Inference in Cleavir”,
Proceedings of ELS 2017

[11] The Unicode Consortium. “The Unicode Standard.”
http://www.unicode.org/versions/latest/


