
52 COMMUNICATIONS OF THE ACM | NOVEMBER 2016 | VOL. 59 | NO. 11

practice

IN THIS INSTALLMENT of Research for Practice, we
provide highlights from two critical areas in storage
and large-scale services: distributed consensus and
non-volatile memory.

First, how do large-scale distributed systems mediate
access to shared resources, coordinate updates to
mutable state, and reliably make decisions in the
presence of failures? Camille Fournier, a seasoned
and experienced distributed-systems builder (and
ZooKeeper PMC), has curated a fantastic selection
on distributed consensus in practice. The history
of consensus echoes many of the goals of RfP: For
decades the study and use of consensus protocols
were considered notoriously difficult to understand

and remained primarily academic con-
cerns. As a result, these protocols were
largely ignored by industry. The rise of
Internet-scale services and demands
for automated solutions to cluster
management, failover, and sharding in
the 2000s finally led to the widespread
practical adoption of these techniques.
Adoption proved difficult, however,
and the process in turn led to new (and
ongoing) research on the subject. The
papers in this selection highlight the
challenges and the rewards of making
the theory of consensus practical—
both in theory and in practice.

Second, while consensus concerns
distributed shared state, our second
selection concerns the impact of hard-
ware trends on single-node shared
state. Joy Arulaj and Andy Pavlo provide
a whirlwind tour of the implications of
NVM (non-volatile memory) technolo-
gies on modern storage systems. NVM
promises to overhaul the traditional
paradigm that stable storage (that is,
storage that persists despite failures)
be block-addressable (that is, requires
reading and writing in large chunks).
In addition, NVM’s performance char-
acteristics lead to entirely different de-
sign trade-offs than conventional stor-
age media such as spinning disks.

As a result, there is an arms race to
rethink software storage-systems ar-
chitectures to accommodate these new
characteristics. This selection high-
lights projected implications for recov-
ery subsystems, data-structure design,
and data layout. While the first NVM
devices have yet to make it to market,
these pragmatically oriented citations
from the literature hint at the volatile
effects of non-volatile media on future
storage systems.

I believe these two excellent contri-

Research
for Practice:
Distributed Consensus
and Implications of
NVM on Database
Management Systems

DOI:10.1145/2949033

 Article development led by
 queue.acm.org

Expert-curated guides to the best
of CS research for practitioners.

BY PETER BAILIS, CAMILLE FOURNIER,
JOY ARULRAJ, AND ANDREW PAVLO

about rfp
Research for Practice combines
the resources of the ACM Digital Library,
the largest collection of computer science
research in the world, with the expertise
of the ACM membership. In every RfP
column two experts share a short, curated
selection of papers on a concentrated,
practically oriented topic.

http://dx.doi.org/10.1145/2949033

NOVEMBER 2016 | VOL. 59 | NO. 11 | COMMUNICATIONS OF THE ACM 53

butions fulfill RfP’s goal of allowing
you, the reader, to become an expert
in a weekend afternoon’s worth of
reading. To facilitate this process, as
always, we have provided open access
to the ACM Digital Library for the rele-
vant citations from these selections so
you can enjoy these research results in
their full glory. Keep on the lookout for
our next installment, and please enjoy!
— Peter Bailis

Peter Bailis is assistant professor of computer science
at Stanford University. His research in the Future Data
Systems group (http://futuredata.stanford.edu/) focuses
on the design and implementation of next-generation
data-intensive systems.

Distributed
Consensus
By Camille Fournier
“A distributed system is
one in which the failure
of a computer you didn’t

know existed can render your own com-
puter unusable.”

—Leslie Lamport
As Lamport predicted in this quote,

the real challenges of distributed com-
puting—not just communicating via
a network, but communicating to un-
known nodes in a network—has greatly
intensified in the past 15 years. With the
incredible scaling of modern systems,
“we have found ourselves in a world
where answering the question, what is
running where?” is increasingly diffi-
cult. Yet, we continue to have require-
ments that certain data never be lost
and that certain actions behave in a con-
sistent and predictable fashion, even
when some nodes of the system may
fail. To that end, there has been a rapid
adoption of systems that rely on consen-
sus protocols to guarantee this consis-
tency in a widely distributed world.

The three papers included in this
selection address the real world of con-
sensus systems: Why are they needed?
Why are they difficult to understand?
What happens when you try to imple-
ment them? Is there an easier way,
something that more developers can
understand and therefore implement?

The first two papers discuss the
reality of implementing Paxos-based
consensus systems at Google, focus-
ing first on the challenges of correctly
implementing Paxos itself, and second
on the challenges of creating a system
based on a consensus algorithm that

provides useful functionality for devel-
opers. The final paper attempts to an-
swer the question—Is there an easier
way?—by introducing Raft, a consen-
sus algorithm designed to be easier for
developers to understand.

Theory Meets Reality

Chandra, T. D., Griesemer, R.,
Redstone, J. et al.
Paxos made live—An engineering
perspective.
Proceedings of the 26th Annual ACM
Symposium on Principles of Distributed
Computing, 2007, 398–407.
http://queue.acm.org/rfp/vol14iss3.html

Paxos as originally stated is a page
of pseudocode. The complete imple-
mentation of Paxos inside of Google’s
Chubby lock service is several thou-
sand lines of C++. What happened?
“Paxos Made Live” documents the
evolution of the Paxos algorithm from
theory into practice.

The basic idea of Paxos is to use vot-
ing by replicas with consistent storage
to ensure that, even in the presence of
failures, there can be unilateral con-
sensus. This requires a coordinator
be chosen, proposals sent and voted
upon, and finally a commit recorded.
Generally, systems record a series of
these consensus values to a sequence
log. This log-based variant is called
multi-Paxos, which is less formally
specified.

In creating a real system, durable
logs are written to disks, which have
finite capacity and are prone to corrup-
tion that must be detected and taken
into account. The algorithm must be
run on machines that can fail, and to
make it operable at scale you need to
be able to change group membership
dynamically. While the system was
expected to be fault tolerant, it also
needed to perform quickly enough to
be useful; otherwise, developers would
work around it and create incorrect
abstractions. The team details their
efforts to ensure the core algorithm is
expressed correctly and is testable, but
even with these conscious efforts, the
need for performance optimizations,
concurrency, and multiple develop-
ers working on the project still means
that the final system is ultimately an
extended version of Paxos, which is dif-
ficult to prove correct.

Hell Is Other Programmers

Burrows, M.
The Chubby lock service for loosely coupled
distributed systems.
Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, 2006,
335–350.
http://queue.a cm.org/rfp/vol14iss3.html

While “Paxos Made Live” discusses the
implementation of the consensus al-
gorithm in detail, this paper about the
Chubby lock service examines the over-
all system built around this algorithm.
As research papers go, this one is a true
delight for the practitioner. In particu-
lar, it describes designing a system and
then evolving that design after it comes
into contact with real-world usage.
This paper should be required reading
for anyone interested in designing and
developing core infrastructure soft-
ware that is to be offered as a service.

Burrows begins with a discussion of
the design principles chosen as the ba-
sis for Chubby. Why make it a central-
ized service instead of a library? Why is
it a lock service, and what kind of lock-
ing is it used for? Chubby not only pro-
vides locks, but also serves small files
to facilitate sharing of metadata about
distributed system state for its clients.
Given that it is serving files, how many
clients should Chubby expect to sup-
port, and what will that mean for the
caching and change notification needs?

After discussing the details of the de-
sign, system structure, and API, Burrows
gets into the nitty-gritty of the imple-
mentation. Building a highly sensitive
centralized service for critical operations
such as distributed locking and name
resolution turns out to be quite difficult.
Scaling the system to tens of thousands of
clients meant being smart about caching
and deploying proxies to handle some of
the load. The developers misused and
abused the system by accident, using fea-
tures in unpredictable ways, attempting
to use the system for large data storage or
messaging. The Chubby maintainers re-
sorted to reviewing other teams’ planned
uses of Chubby and denying access until
review was satisfied. Through all of this
we can see that the challenge in building
a consensus system goes far beyond im-
plementing a correct algorithm. We are
still building a system and must think as
carefully about its design and the users
we will be supporting.

54 COMMUNICATIONS OF THE ACM | NOVEMBER 2016 | VOL. 59 | NO. 11

practice

nologies—including phase-change
memory, memristors, and STT-MRAM
(spin-transfer torque-magnetoresis-
tive random-access memory)—that
provide low-latency reads and writes
on the same order of magnitude as
DRAM (dynamic random-access mem-
ory), but with persistent writes and
large storage capacity like an SSD (sol-
id-state drive). Unlike DRAM, writes to
NVM are expected to be more expen-
sive than reads. These devices also
have limited write endurance, which
necessitates fewer writes and wear-
leveling to increase their lifetimes.

The first NVM devices released will
have the same form factor and block-
oriented access as today’s SSDs. Thus,
today’s DBMSs will use this type of
NVM as a faster drop-in replacement
for their current storage hardware.

By the end of this decade, however,
NVM devices will support byte-address-
able access akin to DRAM. This will
require additional CPU architecture
and operating-system support for per-
sistent memory. This also means that
existing DBMSs are unable to take full
advantage of NVM because their inter-
nal architectures are predicated on the
assumption that memory is volatile.
With NVM, many of the components
of legacy DBMSs are unnecessary and
will degrade the performance of data-
intensive applications.

We have selected three papers that
focus on how the emergence of byte-
addressable NVM technologies will
impact the design of DBMS archi-
tectures. The first two present new
abstractions for performing durable
atomic updates on an NVM-resident
database and recovery protocols for an
NVM DBMS. The third paper address-
es the write-endurance limitations of
NVM by introducing a collection of
write-limited query-processing algo-
rithms. Thus, this selection contains
novel ideas that can help leverage the
unique set of attributes of NVM devic-
es for delivering the features required
by modern data-management applica-
tions. The common theme for these
papers is that you cannot just run an
existing DBMS on NVM and expect it
to leverage its unique set of proper-
ties. The only way to achieve that is to
come up with novel architectures, pro-
tocols, and algorithms that are tailor-
made for NVM.

Can We Make This Easier?

Ongaro, D., Ousterhout, J.
In search of an understandable consensus
algorithm.
Proceedings of the Usenix Annual Technical
Conference, 2014, 305–320.
https://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro

Finally we come to the question, have
we built ourselves into unnecessary
complexity by taking it on faith that
Paxos and its close cousins are the only
way to implement consensus? What if
there was an algorithm that we could
also show to be correct but was de-
signed to be easier for people to com-
prehend and implement correctly?

Raft is a consensus algorithm writ-
ten for managing a replicated log but
designed with the goal of making the
algorithm itself more understandable
than Paxos. This is done both by de-
composing the problem into pieces
that can be implemented and under-
stood independently and by reducing
the number of states that are valid for
the system to hold.

Consensus is decomposed into is-
sues of leader election, log replication,
and safety. Leader election uses ran-
domized election timeouts to reduce
the likelihood of two candidates for
leader splitting the vote and requiring
a new round of elections. It allows can-
didates for leader to be elected only
if they have the most up-to-date logs.
This prevents the need for transfer-
ring data from follower to leader upon
election. If a follower’s log does not
match the expected state for a new en-
try, the leader will replay entries from
earlier in its log until it reaches a point
at which the logs match, thus correct-
ing the follower. This also means that a
history of changes is stored in the logs,
providing a side value of letting clients
read (some) historical entries, should
they desire.

The authors then show that after
teaching a set of students both Paxos
and Raft, the students were quizzed
on their understanding of each and
scored meaningfully higher on the
Raft quiz. Looking around the current
state of consensus systems in indus-
try, we can see this play out in another
way: namely, several new consensus
systems have been created since 2014
based on Raft, where previously there

were very few reliable and successful
open-source systems based on Paxos.

Bottlenecks, Single Points of
Failure, and Consensus

Developers are often tempted to use
a centralized consensus system to serve
as the system of record for distributed
coordination. Explicit coordination
can make certain problems much easi-
er to reason about and correct for; how-
ever, that puts the consensus system in
the position of the bottleneck or criti-
cal point of failure for the other sys-
tems that rely on it to make progress.
As we can see from these papers, mak-
ing a centralized consensus system
production-ready can come at the cost
of adding optimizations and recovery
mechanisms that were not dreamed of
in the original Paxos literature.

What is the way forward? Argu-
ably, writing systems that do not rely
on centralized consensus brokers to
operate safely would be the best op-
tion, but we are still in the early days
of coordination-avoidance research
and development. While we wait for
more evolution on that front, Raft
provides an interesting alternative,
an algorithm designed for readability
and general understanding. The im-
pact of having an easier algorithm to
implement is already being felt, as far
more developers are embedding Raft
within distributed systems and build-
ing specifically tailored Raft-based
coordination brokers. Consensus
remains a tricky problem—but one
that is finally seeing a diversity of ap-
proaches to reaching a solution.

Camille Fournier is a writer, speaker, and entrepreneur.
Formerly the CTO of Rent the Runway, she serves on
the technical oversight committee for the Cloud Native
Computing Foundation, as a Project Management
Committee member of the Apache ZooKeeper project, and
a project overseer of the Dropwizard Web framework.

Implications of NVM on
Database Management
Systems
By Joy Arulraj and
Andrew Pavlo
The advent of non-vola-
tile memory (NVM) will
fundamentally change
the dichotomy between
memory and durable
storage in a database
management system

(DBMS). NVM is a broad class of tech-

NOVEMBER 2016 | VOL. 59 | NO. 11 | COMMUNICATIONS OF THE ACM 55

practice

ARIES Redesigned for NVM

Coburn, J., et al.
From ARIES to MARS: Transaction support
for next-generation, solid-state drives.
Proceedings of the 24th ACM Symposium on
Operating Systems Principles, 2013, 197–212.
http://queue.acm.org/rfp/vol14iss3.html

ARIES is considered the standard for
recovery protocols in a transactional
DBMS. It has two key goals: first, it pro-
vides an interface for supporting scal-
able ACID (atomicity, consistency, iso-
lation, durability) transactions; second,
it maximizes performance on disk-
based storage systems. In this paper,
the authors focus on how ARIES should
be adapted for NVM-based storage.

Since random writes to the disk
whenever a transaction updates the da-
tabase obviously decrease performance,
ARIES requires that the DBMS first re-
cord a log entry in the write-ahead log
(a sequential write) before updating
the database itself (a random write). It
adopts a no-force policy wherein the up-
dates are written to the database lazily
after the transaction commits. Such a
policy assumes that sequential writes
to non-volatile storage are significantly
faster than random writes. The authors,
however, demonstrate that this is no
longer the case with NVM.

The MARS protocol proposes a new
hardware-assisted logging primitive
that combines multiple writes to ar-
bitrary storage locations into a single
atomic operation. By leveraging this
primitive, MARS eliminates the need for
an ARIES-style undo log and relies on
the NVM device to apply the redo log at
commit time. We are particularly fond
of this paper because it helps in better
appreciating the intricacies involved
in designing the recovery protocol in a
DBMS for guarding against data loss.

Near-Instantaneous
Recovery Protocols

Arulraj, J., Pavlo, A., Dulloor, S.R.
Let’s talk about storage and recovery
methods for non-volatile memory
database systems.
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2015,
707–722.
http://queue.acm.org/rfp/vol14iss3.html

This paper takes a different approach
to performing durable atomic up-

dates on an NVM-resident database
than the previous paper. In ARIES,
during recovery the DBMS first loads
the most recent snapshot. It then
replays the redo log to ensure that
all the updates made by committed
transactions are recovered. Finally, it
uses the undo log to ensure that the
changes made by incomplete transac-
tions are not present in the database.
This recovery process can take a lot of
time, depending on the load on the
system and the frequency with which
snapshots are taken. Thus, this paper
explores whether it is possible to le-
verage NVM’s properties to speed up
recovery from system failures.

The authors present a software-
based primitive called non-volatile
pointer. When a pointer points to data
residing on NVM, and is itself stored
on NVM, then it will remain valid even
after the system recovers from a power
failure. Using this primitive, the au-
thors design a library of non-volatile
data structures that support durable
atomic updates. They propose a recov-
ery protocol that, in contrast to MARS,
obviates the need for an ARIES-style
redo log. This enables the system to
skip replaying the redo log, and there-
by allows the NVM DBMS to recover the
database almost instantaneously.

Both papers propose recovery pro-
tocols that target an NVM-only storage
hierarchy. The generalization of these
protocols to a multitier storage hierar-
chy with both DRAM and NVM is a hot
topic in research today.

Trading Expensive Writes
for Cheaper Reads

Viglas, S.D.
Write-limited sorts and joins
for persistent memory.
Proceedings of the VLDB Endowment 7, 5
(2014), 413–424.
http://www.vldb.org/pvldb/vol7/p413-viglas.pdf

The third paper focuses on the higher
write costs and limited write-endur-
ance problems of NVM. For several de-
cades algorithms have been designed
for the random-access machine model
where reads and writes have the same
cost. The emergence of NVM devices,
where writes are more expensive than
reads, opens up the design space for
new write-limiting algorithms. It will
be fascinating to see researchers derive

new bounds on the number of writes
that different kinds of query-process-
ing algorithms must perform.

Viglas presents a collection of novel
query-processing algorithms that mini-
mize I/O by trading off expensive NVM
writes for cheaper reads. One such
algorithm is the segment sort. The ba-
sic idea is to use a combination of two
sorting algorithms—external merge
sort and selection sort—that splits the
input into two segments that are then
processed using a different algorithm.
The selection-sort algorithm uses extra
reads, and writes out each element in
the input only once at its final location.
By using a combination of these two al-
gorithms, the DBMS can optimize both
the performance and the number of
NVM writes.

Game Changer for
DBMS Architectures
NVM is a definite game changer for
future DBMS architectures. It will re-
quire system designers to rethink
many of the core algorithms and
techniques developed over the past
40 years. Using these new storage
devices in the manner prescribed
by these papers will allow DBMSs
to achieve better performance than
what is possible with today’s hard-
ware for write-heavy database appli-
cations. This is because these tech-
niques are designed to exploit the
low-latency read/writes of NVM to en-
able a DBMS to store less redundant
data and incur fewer writes. Further-
more, we contend that existing in-
memory DBMSs are better positioned
to use NVM when it is finally available.
This is because these systems are al-
ready designed for byte-addressable
access methods, whereas legacy disk-
oriented DBMSs will require laborious
and costly overhauls in order to use
NVM correctly, as described in these
papers. Word is bond.

Joy Arulraj is a Ph.D. candidate at Carnegie Mellon
University. He is interested in the design and
implementation of next-generation database
management systems.

Andy Pavlo is an assistant professor of databaseology
in the Department of Computer Science at Carnegie
Mellon University, Pittsburgh, PA.

Copyright held by authors.
Publication rights licensed to ACM. $15.00.

