
A-UG-NIOSETHERKIT-1.0

Development Kit

Nios Ethernet

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

User Guide
July 2001

Version 1.0

P25-06807-00

http://www.altera.com

ii Altera Corporation

Nios Ethernet Development Kit User Guide

Copyright 2001 Altera Corporation. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all
other words and logos that are identified as trademarks and/or service marks are unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. ModelSim is a registered
trademark of Mentor Graphics Corporation. Altera products are protected under numerous U.S. and foreign patents and pending applications,
maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s
standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility
or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by
Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services. All rights reserved.

About This User Guide
User Guide
Contents

The purpose of this manual is to provide you with the information
necessary to get you started using the NiosTM Ethernet Development Kit
(EDK). This manual provides:

� An overview of the Nios EDK, its contents, and its intended use
� A getting started section with a step-by-step guide to installing the

development tools, installing hardware, and accessing the software
application examples. A daughter card reference section providing a
description of the daughter card including a functional overview,
pinout information, and descriptions of the PC-board design files
included with the kit

� A software overview introducing you to the C-language library,
providing a description of the supported protocols and the general
structure of the provided functions and data structures

� A plugs library reference describing the software routines

Table 1 below shows the Nios Ethernet Development Kit User’s Guide
revision history.

Table 1. Revision History

Revision Date Description

Version 1.0 July 2001 Nios Ethernet Development Kit User Guide -
printed
Altera Corporation iii

About This User Guide
How to Contact
Altera

For the most up-to-date information about Altera® products, go to the
Altera world-wide web site at http://www.altera.com.

For additional information about Altera products, consult the sources
shown in Table 2.

Note:
(1) You can also contact your local Altera sales office or sales representative.

Table 2. How to Contact Altera

Information Type Access USA & Canada All Other Locations

Altera Literature
Services

Electronic mail lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical
customer service

Telephone hotline (800) SOS-EPLD (408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

Fax (408) 544-7606 (408) 544-7606

Technical support Telephone hotline (800) 800-EPLD
(7:00 a.m. to 5:00 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

Fax (408) 544-6401 (408) 544-6401 (1)

Electronic mail support@altera.com support@altera.com

FTP site ftp.altera.com ftp.altera.com

General product
information

Telephone (408) 544-7104 (408) 544-7104 (1)

World-wide web site http://www.altera.com http://www.altera.com
iv Altera Corporation

mailto:lit_req@altera.com
mailto:lit_req@altera.com
mailto:telecom@altera.com
mailto:telecom@altera.com
ftp.altera.com
ftp.altera.com
http://www.altera.com
http://www.altera.com
http://www.altera.com

 About This User Guide
Typographic
Conventions

The Nios Ethernet Development Kit User Guide uses the typographic
conventions shown in Table 3.

Table 3. Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \maxplus2 directory, d: drive, chiptrip.gdf file.

Bold italic type Book titles are shown in bold italic type with initial capital letters. Example:
1999 Device Data Book.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75
(High-Speed Board Design).

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n +
1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of Quartus II and MAX+PLUS II
Help topics are shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX
8000 Device with the BitBlaster™ Download Cable.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix _n, e.g., reset_n.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\max2work\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

� Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Altera Corporation v

About This User Guide
Notes:
vi Altera Corporation

Contents Contents
About This User Guide..iii
How to Contact Altera ... iv
Typographic Conventions ...v

Overview...1
Nios Ethernet Development Kit Description..1
Installed Components ..2
MAC Addresses ..3

Getting Started..5
Verifying Kit Contents ...5
Setting Up the Daughter Card ..5
Installing the Hardware and Software Files ...8
Loading the Reference Design ..9
Running Example Applications..12

The Hello Plugs Application Example...12
Configure Your Network Settings..14

The Networked-Based GERMS Monitor Application Example.......................................16
The Simple Web Server Application Example ...18

Daughter Card .. 21
Daughter Card Components ...21
Functional Overview ..22
Stacking Daughter Cards...22
SOPC Builder Library Component...23
Connector Pinouts ..23
Nios System to Daughter Card Pin Map...25

Software Overview ... 29
Software Description ..29

System Requirements ...29
Protocols Supported ...29
LIbrary Features ..29

Protocols Architecture..30
Standards..31

ARP (RFC 826)...31
IP (RFC 791) ...31
ICMP (RFC 792)...31
UDP (RFC 768) ..31
DNS (RFC 1034 & 1035) ...32
TCP (RFC 793) ...32

Build Options...32
PLUGS_DEBUG (Default Value = 1) ...32
vii Altera Corporation

Contents
PLUGS_PLUG_COUNT (Default Value = 6)..32
PLUGS_ADAPTER_COUNT (Default Value = 2) ...32
PLUGS_DNS (Default Value = 1) ...33
PLUGS_PING (Default Value = 1) ...33
PLUGS_TCP (Default Value = 1) ..33

Byte Ordering ..33
Data Structures ..34
Payload Descriptions..37

Plugs Library Routines .. 39
nr_plugs_initialize ..40
nr_plugs_terminate...41
nr_plugs_set_mac_led..42
nr_plugs_create ...43
typedef int (*nr_plugs_receive_callback_proc) ..45
nr_plugs_destroy ..47
nr_plugs_connect ..48
nr_plugs_send ...50
nr_plugs_send_to..51
int nr_plugs_listen ..52
typedef int (*nr_plugs_listen_callback_proc) ...53
nr_plugs_ip_to_ethernet ..54
nr_plugs_name_to _ip..55
nr_plugs_idle ...56
void nr_plugs_print_ethernet_packet..57
nr_n2h16...58
nr_h2n16...58
nr_n2h32...58
nr_h2n32...58

Nios Terminology.. 59
viii Altera Corporation

Overview

1
Overview
Nios Ethernet
Development
Kit Description

The Nios Ethernet Development Kit (EDK) includes hardware and
software components that provide network connectivity for your Nios-
based embedded systems. The components included in this kit are:

� A network-interface daughter card that can plug directly into the
Nios development board.

� An SOPC Builder library component that defines the logic and
interface signals necessary to use the daughter card in a Nios system.

� A C-language library that provides a network-protocol stack. This
library includes support for raw Ethernet, ARP, IP, ICMP, UDP, and
TCP protocols and utility routines for controlling the daughter card
hardware.

The kit includes APEX hardware reference designs and example software
application programs. These reference designs and application examples
are intended as starting points to be modified by you for your specific
network-enabled application.

The Nios EDK library components and tools can be installed on Solaris,
HP-UX or PC-Windows (98/NT/2000).

1 The Excalibur™ Development Kit, featuring the Nios embedded
processor must be installed before you can use the Nios Ethernet
Development Kit.

The following items are included in the Nios EDK:

� Nios EDK daughter card based on the Cirrus Logic CS8900A
PHY/MAC chip

� Male-to-male RJ-45 network cable
� Female-to-male crossover adapter, used for direct PC connection
� Nios EDK CD-ROM

The Nios EDK CD-ROM contains the following files:

� SOPC library components
� PC-board schematic and layout files for the Nios EDK daughter card
� Example hardware reference design configurations:
Altera Corporation 1

Overview
– Nios 32-bit CPU for a single daughter card
– Nios 16-bit CPU for a single daughter card
– Nios 32-bit for dual-stacked daughter cards

� Example software applications:
– Library general demonstration and configuration programs
– Example web server
– Nios 32-bit CPU network-based GERMS monitor application

example
� Documentation:

– CS8900A Product Data Sheet
– Nios Ethernet Development Kit User Guide

Installed
Components

The Nios EDK CD-ROM includes an InstallShield installation wizard for
Windows workstations, and install scripts for Unix workstations. A step-
by-step installation procedure is described in. See “Installing the
Hardware and Software Files” on page 8.

When installed on your computer, the Nios EDK will add files to your
SOPC Builder home <SOPC-HOME> directory. The default directory is
C:\Altera\excalibur\ sopc_builder. These files are:

� The SOPC Builder library component directory is:

– <SOPC-HOME>\components\altera_avalon_cs8900\

� The APEX hardware (PLD) reference designs are in:

– <SOPC-HOME>\examples\ethernet_kit_reference_design\

– <SOPC-HOME>\examples\ethernet_kit_reference_design_16_bit\

– <SOPC-HOME>\examples\ethernet_stacked_reference_design\

� The PDF documentation files are in:

– <SOPC-HOME>\documents\

� A complete set of PC-board manufacturing documents for the
daughter card. This includes all design-files necessary to build and
assemble the daughter card board and components. These
documents are found in:

– <SOPC-HOME>\documents\nedk_daughtercard_documents\

The Nios EDK daughter card manufacturing and design documents give
you all the necessary information to build copies of the daughter card
yourself. You may also use these design files to cut-and-paste sections of
the daughter card design into your own custom PC-board schematic,
layout, or bill of materials (BOM).
2 Altera Corporation

 Overview

O
verview

1
MAC Addresses All Ethernet devices require a unique 48-bit MAC address. All Nios EDK
kits ship with the same default MAC address. This MAC address serves
as a placeholder during development. To obtain your own block of unique
Ethernet MAC addresses for your products, refer to the following website:
http://www.standards.ieee.org/regauth/oui/index.shtml.

A single Nios EDK system can use the default MAC address on a LAN
without a conflict. However, two Nios EDK systems with the same MAC
address will cause conflicts. If you are using two or more Nios EDK
systems on the same LAN you must assign a unique Ethernet MAC
address to each system.

The Nios Development Kit and the Nios EDK form a prototyping
platform for creating your custom embedded, networked system. These
development boards, reference designs and applications allow you to
rapidly prototype your application.
Altera Corporation 3

Overview
Notes:

4 Altera Corporation

Getting

2

Started

Getting Started
This section explains how to set up the Nios EDK daughter card, install
the Nios EDK hardware and software files, load the hardware reference
design into the board and run the Ethernet application examples.

Verifying Kit
Contents

Verify the following items are included in your Nios Ethernet
Development Kit:

� Nios EDK daughter card based on the CS8900A PHY/MAC chip
� Male-to-male RJ-45 network cable
� Female-to-male crossover adapter, used for direct-PC connection
� Nios EDK CD-ROM
� O’Reilly Internet Core Protocols Manual
� Nios Ethernet Development Kit User Guide

Setting Up the
Daughter Card

The hardware reference designs included with the Nios EDK assumes the
daughter card is connected to the prototype connectors JP8, JP9, and JP10
on the Nios development board and that your board is already set up.

f If you are setting up your Nios development board for the first time, refer
to Nios Embedded Processor Getting Started User Guide that shipped with
your Nios Development Kit.

1. Verify that your Nios board is set up correctly and the power is off.
Altera Corporation 5

Getting Started
1 When connecting the daughter card, make sure you place the
card on the prototype connectors correctly as shown in Figure 1.
If you do not, the board may be permanently damaged.

Figure 1. Incorrect Daughter Card Connection

2. Place the daughter card on the JP8, JP9 and JP10 prototype
connectors.

Figure 2. Daughter Card Placement for Use with the APEX Reference Design
6 Altera Corporation

 Getting Started

Getting

2

Started
1 The daughter card can also be placed on the JP11, JP12 and JP13
prototype connectors. However, the APEX hardware reference
designs shipped with the kit will not work.

Figure 3. Alternative Placement of the Daughter Card

3. Connect the network cable:

If you are connected to a LAN or HUB:

Connect the male-to-male networking cable to the RJ-45 connector on
the daughter card as shown in Figure 4.

Figure 4. Using the Nios EDK with a LAN or HUB
Altera Corporation 7

Getting Started
If you are not using a LAN or HUB connection and are connected
directly to a workstation or PC Ethernet jack, insert the female-to-
male RJ-45 crossover adapter to the networking cable and then
connect the adapter to the RJ-45 on the daughter card as shown in
Figure 5.

Figure 5. Using the Nios EDK with a Workstation or PC Ethernet Jack

4. Connect the other end of the networking cable to your Ethernet LAN
or workstation.

Installing the
Hardware and
Software Files

The instructions below are for a Windows PC. These instructions assume
you have already installed or upgraded your Nios Development Kit to
version 1.1.1 or higher.

1. Insert the Nios EDK CD-ROM into your CD-ROM drive. The
InstallShield installer begins automatically.

f Unix users: See the Readme text file for installation instructions.

8 Altera Corporation

 Getting Started

Getting

2

Started
2. Follow the install instructions. The screen in Figure 6 appears when
you have completed the installation. Click Finish.

Figure 6. Install Completed

Loading the
Reference
Design

This section explains how you will use Quartus® II version 1.0 software to
load the Nios EDK reference design into the Nios development board. All
instructions assume you are using Quartus II.

1. Click the Start Menu > Programs > Altera > Excalibur > Nios
Ethernet Development Kit Reference Design.

2. In the Quartus II software, double-click the Open Programmer icon.

Figure 7. Quartus II Version 1.0 Icons

Open Programmer Icon
Altera Corporation 9

Getting Started
The Chain 1 dialog box appears as shown in Figure 8.

Figure 8. Chain 1 Dialog Box

3. Click Add File. The Select File dialog box appears as shown in
Figure 9.

Figure 9. The Select File Dialog Box
10 Altera Corporation

 Getting Started

Getting

2

Started
4. Double-click the ethernet_kit_reference_design.sof file and the
file appears in the Chain 1 dialog box as shown in Figure 10.

Figure 10. Chain 1 Dialog Box

5. Click the check box in the Program/Configure column as shown in
Figure 10.

6. Check the Programming Hardware section of the screen as shown in
Figure 11. ByteBlasterMV should appear in the Type field selection.
To change the type, click Setup and select ByteBlaster from the
Hardware Type drop-down list box.

Figure 11. ByteBlasterMV Selection

1 If ByteBlasterMV is not an available selection, you will need to
install the ByteBlaster driver. You do not need to install drivers if
you are using Windows 98.
Altera Corporation 11

Getting Started
f For information about installing the ByteBlasterMV driver, see page 23 in
the Quartus Installation & Licensing for PCs Manual or go to
http://www.altera.com for the PDF version of this manual.

7. Click Start. The two-digit 7-segment display on the Nios
development board turns off. When the download is completed, the
Progress bar reads 100% and the dual 7-segment LED display lights
turns on.

f If you encounter a JTAG error, see page 12 of the Nios Embedded Processor
Development Board Manual for setting the switches correctly.

Running
Example
Applications

Using the bash shell you will now run the example applications. If you are
unfamiliar with bash, refer to the Nios Embedded Processor Software
Development Reference Manual for more information.

The Hello Plugs Application Example

To run Hello Plugs, follow these steps:

1. From the Windows Start Menu, select Altera > Excalibur > Nios
SDK Shell. The bash window appears and displays the [bash]:
prompt as shown in Figure 12.

Figure 12. The Nios SDK Shell

2. At the [bash]: prompt, type cd //c/Altera/Excalibur/
sopc_builder/examples/ethernet_kit_reference_
design/ref_system_sdk/src r
12 Altera Corporation

 Getting Started

Getting

2

Started
1 If you installed the Nios EDK program in another directory,
make the appropriate change in step 2.

3. Type nios-build hello_plugs.c r

f The default setting for the nios-run utility is <COM1>. For more
information about specifying another serial port when executing nios-
run, see Appendix A of the Nios Embedded Processor Software Development
Reference Manual found at the Altera website (http://www.altera.com).

4. Type nios-run hello_plugs.srec r

5. Press SW3 to clear the Nios development board. After pressing SW3,
the hello_plugs.srec file begins downloading to the board as
shown in Figure 13.

Figure 13. Downloading File to the Development Board

1 If this is the first time you are using the Nios product, the Nios
Peripheral Test Menu could appear. If this menu appears, press
Ctrl+C and then repeat Step 4.
Altera Corporation 13

Getting Started
Once the download is completed, the Hello Plugs Main Menu appears as
shown in Figure 14.

Figure 14. The Nios Ethernet Hello Plugs Main Menu

Before you can use Hello Plugs, the network-based GERMS monitor, or
the simple web server application examples, you must first configure the
network settings.

Configure Your Network Settings

The instructions for configuring your network settings will only work if
your PC is connected directly to your Nios development board with a
Nios EDK daughter card using an Ethernet cable and crossover adapter.

1 You can also connect your Ethernet daughter card to your office
LAN. Consult with your system administrator.

1. Type a r to select Network Settings to set the network settings of
your Ethernet card. The Network Setting Menu appears as shown in
Figure 15.
14 Altera Corporation

 Getting Started

Getting

2

Started
Figure 15. Configuring Your Network Settings

2. Type d r to select Reset All Settings.

3. Type c r to select Enter New Settings. You will then be prompted to
enter each of the five settings shown above.

4. Press r to keep the default settings for the ethernet address.

5. Type your PC’s IP address for the IP address. Change the last
number in the IP address up or down one digit (the allowable range
is 2 to 254). For example, if your PC is using IP address 64.3.99.73, set
your Nios EDK to 64.3.99.72 or 64.3.99.74.

1 If you are connecting your Nios EDK to your office LAN, ask
your system administrator for an unused static IP address. If you
are using more than one Nios board on your LAN, give each
board a distinct Ethernet address (MAC address). Below are safe
MAC addresses for you to use:

00:42:00:00:23:00

00:23:23:00:23:23

00:42:42:42:42:00

6. Type your PC’s nameserver address for the nameserver ip address.

1 You will only use the nameserver ip address if your Nios EDK is
connected to a LAN.
Altera Corporation 15

Getting Started
7. Use the default setting for the subnet mask. If you are connected to a
LAN, use the same subnet mask that your PC uses.

8. Type the same setting as your PC for the gateway ip address.

1 You will only use the gateway ip address if your Nios EDK is
connected to a LAN.

9. Type b (Save To Flash) after entering all the settings,. This writes the
the network settings to the Nios development board’s Flash memory.

1 See the description of the plugs library routine
nr_plugs_initialize()for an explanation about using
these stored settings in your own software applications.

The Networked-Based GERMS Monitor Application Example

To use this application example, you should be familiar with the Nios
GERMS monitor and you must first run the Hello Plugs application to
setup your network parameters. See “The Hello Plugs Application
Example” on page 12 for more information.

f For more information about using the GERMS monitor refer to the Nios
Embedded Processor Software Development Reference Manual that shipped
with your ExcaliburTM Development Kit, featuring the Nios embedded
processor.

To run the networked-based GERMS monitor application example, follow
these steps:

1. Run the Hello Plugs application to setup your network parameters if
you have not done so already. This only needs to be done once.
When completed, press Ctrl+C.

2. Build the germs server and client by typing the following command:

make -f Makefile_nedk all r

3. Press SW3 to clear the development board.

4. Download the germs server application SREC (serial transfer) by
typing the following command:

nios-run -x germs_server.srec r

f For more information about the nios-run command line options, see
Appendix A of the Nios Embedded Processor Software Development Reference
Manual found at the Altera website (http://www.altera.com).
16 Altera Corporation

 Getting Started

Getting

2

Started
5. Connect to the germs server using the client application by typing
the following command at the [bash]: prompt:

germs_client -n <Nios IP address> -t r

When running the client, make sure you supply the correct IP of the
Nios board. This will be the same IP address you entered when
setting your network parameters in Hello Plugs (i.e. <Nios IP
address> = 192.168.1.1).

1 Pressing Enter will cause a memory dump to display as shown
in Figure 16.

Figure 16. Connecting to the GERMS Server

6. Press the ? key + Enter to display the GERMS menu as shown in
Figure 17.
Altera Corporation 17

Getting Started
Figure 17. The Nios GERMS Menu

7. To change the dual 7-segment display, type m420:3636 r This
command confirms your networked GERMS monitor-based
application example is working.

1 For more information, see the Readme_nedk_germs.txt file
included in your kit.

The Simple Web Server Application Example

To use this application example, you must first run the Hello Plugs
application to setup your network parameters. See “The Hello Plugs
Application Example” on page 12 for more information. To run the simple
web server application example, follow these steps:

1. Begin by building a flash image of the web pages. To do this, type the
following command:

wosfs_maker.pl exc-nios.gif index.html

template_page.html.template 404_page.html

static_page.html > pages.flash r

2. Store the web pages in Flash memory by typing the following
command:

nios-run -x pages.flash r
18 Altera Corporation

 Getting Started

Getting

2

Started
f For more information about the nios-run command line options, see
Appendix A of the Nios Embedded Processor Software Development Reference
Manual found at the Altera website (http://www.altera.com).

3. Build the example web server by typing the following command:

nios-build wosfs.c nedk_example_web_server.c r

4. Run the web server by typing the following command:

nios-run nedk_example_web_server.srec r

5. Open your web browser to view the web page you built.

6. In the Address field, enter the IP address you used as a network
settings for your Ethernet card to display your web page.
Altera Corporation 19

Getting Started
Notes:
20 Altera Corporation

D
aughter

3

Card

Daughter Card
This section describes the network interface daughter card included in the
Nios EDK.

Daughter Card
Components

The Nios EDK daughter card is a circuit-board with the following
components: See Figure 18.

� A Cirrus Logic CS8900A integrated Ethernet 10Mbit PHY/MAC chip
� A RJ-45 network connector with integrated-transformer magnetics

and Link/LAN LEDs
� Three female connectors for mounting on the Nios development

board
� Three male headers for stacking two daughter cards
� A 20 MHz crystal oscillator that is used by the CS8900A chip
� All necessary resistors and capacitors

A complete manufacturing bill of materials for the daughter card is
provided in the installed nedk_daughter_card_documents directory.

Figure 18. The Nios EDK Daughter Card

RJ-45 Connector

CS8900A Ethernet
Controller

Crystal
Oscillator
Altera Corporation 21

Daughter Card
Functional
Overview

The main functional component on the Nios EDK daughter card is a
CS8900A integrated PHY/MAC chip. A Portable Document Format (PDF)
data sheet for this chip is included in the installed Nios EDK
documentation. The CS8900A chip presents an ISA-bus interface to the
Nios CPU. The necessary electrical-interface signals are provided on the
set of female connectors. These connectors are compatible with the
Expansion Prototype Connector groups on the Nios Development Board.
The Nios EDK daughter card is compatible with either the 5-V (JP11, JP12,
JP13) or the 3.3-V (JP8, JP9, JP10) Expansion Prototype Connector groups.
The daughter card does not use any 5-V signals.

1 All of the included reference designs use a Nios EDK daughter
card connected to the 3.3-V Expansion Prototype Connector
group (JP8, JP9, and JP10).

1 To use a Nios EDK daughter card connected to the 5-V
Expansion Prototype Connector group (JP11, JP12 and JP13), you
will need to create a new APEX configuration with the
appropriate pin-assignments.

Stacking
Daughter Cards

The Nios EDK daughter card connectors are arranged such that two
daughter cards can be stacked vertically as shown in Figure 19. Two
stacked daughter cards can be accessed via the same (shared) tri-state data
bus. The Nios EDK includes only one daughter card. The electrical
interface does not support stacks more than two cards deep.

Figure 19. Stacked Daughter Cards
22 Altera Corporation

 Daughter Card

Daughter

3

Card
SOPC Builder
Library
Component

The Nios EDK includes an SOPC Builder library component that provides
all logic and I/O signals necessary for using the daughter card. A library
component is an add-on to the Nios SOPC Builder that makes a new
peripheral available. After the Nios EDK is installed, you will see a new
library component in the SOPC Builder’s menu of available peripherals.
The new component is named Ethernet Interface (CS8900). You may add
one or more of these components to your Nios system using the Nios
System Builder MegaWizard®.

Each Ethernet Interface (CS8900) component in your system will have an
associated group of I/O pins on your system module. A detailed
description of how to connect these system-module I/O pins to the Nios
EDK daughter card can be found “Nios System to Daughter Card Pin
Map” on page 25. An example of the necessary connections (pin-
assignments) can also be found in the included reference designs.

To access two stacked daughter cards, their associated Ethernet
Interface (CS8900) peripherals must be assigned to the same, shared tri-
state data bus.

The CS8900A chip can be used in either memory mode or I/O-mode. For
more information, see the CS8900A Product Data Sheet. The included
Ethernet Interface (CS8900) library component and all associated
software libraries use the CS8900A chip in I/O-mode. The electrical
interface on the daughter card supports memory-mode operation, but
none of the included Nios EDK interface logic, reference designs, or
software libraries make use of this feature. All of the examples, software,
and documentation in the Nios EDK show the CS8900A being used in
I/O-mode.

Connector
Pinouts

This section provides complete pinouts for connectors F8, F9, and F10 on
the Nios EDK daughter card. The Nios CPU accesses the daughter card
through these connectors. Most of the interface pins connect directly to
device pins on the CS8900A chip. Where appropriate, the connector
diagrams indicate the name of the CS8900A pin that corresponds to each
connector pin. Detailed schematics showing all components and
connections on the daughter card are found in the CS8900A Product Data
Sheet found in your kit. See Figure 20 through Figure 22.
Altera Corporation 23

Daughter Card
Figure 20. F8 Connector Pinouts

Figure 21. F9 Connector Pinouts
24 Altera Corporation

 Daughter Card

Daughter

3

Card
Figure 22. F10 Connector Pinouts

Nios System to
Daughter Card
Pin Map

Each Ethernet Interface (CS8900) peripheral in your Nios system will have
an associated set of I/O pins on your system module. This section
describes how to connect these system-module I/O pins to the daughter
card. In general, you will establish these connections by making pin-
assignments in your PLD design. The reference designs included with the
kit include correct pin-assignment information that you can modify for
your own design.

The names given to the system-module I/O ports will depend on the
name you provide for the Ethernet Interface (CS8900) peripheral. In
Tables 3 and 4, <your_name> indicates the name you assigned to this
component. The name for some system-module I/O ports will also
depend on the tri-state bus you have selected for this peripheral. In
Tables 3 and 4, <your_bus_name> indicates the name of the bus to which
you assigned this Ethernet Interface (CS8900) peripheral.
Altera Corporation 25

Daughter Card
If you are connecting an Ethernet Interface (CS8900) peripheral
component to the upper of the two stacked daughter cards, then
substitute (upper) for (lower) in the right column of the above table.

Table 3. Nios 32-bit CPU System Module I/O Port Name and Daughter Card
Pin Name

32-bit CPU System Module I/O Port Name Daughter Card Pin Name
(Lower of Two Stacked Cards)

<your_bus_name>_data SD[15..0]

<your_bus_name>_address [4] SA[3]

<your_bus_name>_address [3] SA[2]

<your_bus_name>_address [2] SA[1]

<your_bus_name>_byteenablen[1] SHBE_n

ior_n_to_the_<your_name> IOR_n (lower)

iow_n_to_the_<your_name> IOW_n (lower)

irq_to_the_<your_name> INTRQ0 (lower)

~(system module reset_n) RESET

constant Logic-1 MEMW_n

constant Logic-1 MEMR_n

constant Logic-1 SA[9..8]

constant Logic-0 SA[11..10]

constant Logic-0 SA[7..4]

constant Logic-0 SA[0]

constant Logic-0 CHIPSEL_n (lower)

constant Logic-0 CHIPSEL_n (upper)
26 Altera Corporation

 Daughter Card

Daughter

3

Card
If you are connecting an Ethernet Interface (CS8900) peripheral
component to the upper of the two stacked daughter cards, then
substitute (upper) for (lower) in the right column of the above table.

Table 4. Nios 16-bit CPU System Module I/O Port Name and Daughter Card
Pin Name

16-bit CPU System Module I/O Port Name Daughter Card Pin Name
(Lower of Two Stacked Cards)

<your_bus_name>_data SD[15..0]

<your_bus_name>_address [3] SA[3]

<your_bus_name>_address [2] SA[2]

<your_bus_name>_address [1] SA[1]

<your_bus_name>_byteenablen[1] SHBE_n

ior_n_to_the_<your_name> IOR_n (lower)

iow_n_to_the_<your_name> IOW_n (lower)

irq_to_the_<your_name> INTRQ0 (lower)

~(system module reset_n) RESET

constant Logic-1 MEMW_n

constant Logic-1 MEMR_n

constant Logic-1 SA[9..8]

constant Logic-0 SA[11..10]

constant Logic-0 SA[7..4]

constant Logic-0 SA[0]

constant Logic-0 CHIPSEL_n (lower)

constant Logic-0 CHIPSEL_n (upper)
Altera Corporation 27

Daughter Card
Notes:
28 Altera Corporation

Softw
are

4

O
verview

Software Overview
Software
Description

The software library included in the Nios EDK is called the Plugs Library.
The Plugs Library included in the Nios EDK allows your software to use
network protocols for transmitting and receiving data.

System Requirements

� Nios CPU
� 20K code footprint
� 8K data footprint
� Nios Timer peripheral named timer 1

Protocols Supported

� Raw Ethernet
� Address resolution protocol (ARP)
� Internet protocol (IP)
� Internet control message protocol (ICMP)
� User datagram protocol (UDP)
� Transmission control protocol (TCP)

LIbrary Features

� Access to low-level packets
� Access to high level-packet payloads
� Conforms to RFCs
� Allows you to open connections and send data with only a few lines

of code.
� Is similar to the Unix-standard sockets routines.
� Each plug can be set to print debug information for either transmit or

receive data.

1 The Plugs Library requires your system to have a Timer
peripheral named timer 1.

The customized software development kit for the CS8900A Ethernet
adapter peripherals contains the Plugs Library and example applications.
This library contains single-threaded routines that rely on polling.
Altera Corporation 29

Software Overview
Protocols
Architecture

Figure 23 shows the relationships between the library-supported Nios
EDK protocols.

Figure 23. Nios EDK Protocol Structure
30 Altera Corporation

 Software Overview

Softw
are

4

O
verview
Standards The protocols supported by the Plugs Library adhere to the standards
recommended by the RFCs at http://www.ietf.org.

The Nios EDK supports Ethernet and 802.3 packets. To send a 802.3
packet, the application will have to construct all fields explicitly. Higher
level protocols will NOT support 802.3, and will use Ethernet instead.
Nios EDK does NOT support trailer encapsulation as documented in RFC
893.

The library routines send and receive Ethernet packets to and from
arbitrary 48-bit Ethernet media access control (MAC) addresses. Higher
level protocols such as ICMP, UDP, and TCP use Ethernet transparently.

ARP (RFC 826)

Library routines are provided to query the LAN for the Ethernet address
of a particular remote IP address, and to respond to queries for the local
IP address. Other protocols like IP use ARP transparently.

IP (RFC 791)

Nios EDK encapsulates IP on Ethernet (RFC 894). Library routines are
provided for sending and receiving IP packets to and from a user-defined
32-bit remote IP address. Higher level protocols like ICMP, UDP, and TCP
use IP transparently.

� Nios EDK does not support IP packet fragmentation.
� Nios EDK supports IPv4.

ICMP (RFC 792)

The Plugs Library can respond to an ICMP echo request (ping). Library
routines are provided to send and receive ICMP error messages.

UDP (RFC 768)

UDP is a low-level packet format built on top of IP. Library routines are
provided to send and receive UDP packets to and from an arbitrary 32-bit
remote IP address and 16-bit port number. Higher-level protocols like
DNS use UDP transparently.
Altera Corporation 31

Software Overview
DNS (RFC 1034 & 1035)

Library routines are provided to transmit a DNS query for a host name to
a specified name server. If the host name is found, the name server returns
the associated IP address requested. The Nios EDK supports UDP
encapsulation of DNS and does not support TCP encapsulation of DNS.

TCP (RFC 793)

TCP is a connection-oriented protocol built on top of IP. Library routines
are provided to open a TCP connection to an arbitrary 32-bit IP address
and 16-bit port. This protocol receives requests for incoming connections,
accepts or denies requests for incoming connections, transmits and
receives bytes on an established connection, and closes an established
connection.

Build Options The following build options are provided for modulating the features and
the footprint of the Plugs Library.

PLUGS_DEBUG (Default Value = 1)

This build option may be set to 0, to disable all debug-printing features, or
1 or 2 which enables debug-printing for those plugs that are created with
the ne_plugs_flag_debug_rx or ne_plugs_flag_debug_tx flags
set. When set to zero, no printing code is linked to the plug.

PLUGS_PLUG_COUNT (Default Value = 6)

This build option sets the maximum number of plugs that you can create.
The maximum number of plugs the library can handle is 32 plugs. The
library itself uses 2 or 3 ports per adapter for managing ARP, pings, and
DNS. Changing this option affects the amount of static storage used by the
library.

PLUGS_ADAPTER_COUNT (Default Value = 2)

The Plugs Library can support multiple network adapters. This build
option sets the maximum number of adapters that can be used. It affects
the amount of static storage used by the library.

32 Altera Corporation

 Software Overview

Softw
are

4

O
verview
PLUGS_DNS (Default Value = 1)

The Plugs Library lets you establish connections to a remote network
device using either its name or its IP address. If you use its name, the Plugs
Library contacts a domain name server to translate it into an IP address. If
your application does not need to establish outgoing connections (the
application is a server only), or uses IP addresses only, then this build
option can be set to zero to omit the code that implements name lookups.

PLUGS_PING (Default Value = 1)

In general, every network device should respond to an ICMP echo request
message (ping). You can disable a ping response to save a small amount
of code space by setting this build option to zero.

PLUGS_TCP (Default Value = 1)

If your application does not use TCP for any of its plugs, you can disable
it and save a small amount of code space by setting this build option to
zero.

Byte Ordering Network-byte order is big endian. The Nios CPU byte order is little
endian. Because of this, packet header numbers reside in memory in
reverse order. This is often desirable for comparing the packet header
numbers to other packet header numbers being sent over the network.
The normal ordering for a particular CPU is called host ordering.

It is important to know if a particular integer in memory or a register is in
host order or network order when using the Nios EDK Plugs Library.

Some parameters to routines in the Plugs Library are given in network
order, and others are given in host order. To distinguish between network
order and host order, the following data types are declared:

typedef unsigned char host_8
typedef unsigned short host_16
typedef unsigned long host_32

typedef unsigned char net_8
typedef unsigned short net_16
typedef unsigned long net_32
Altera Corporation 33

Software Overview
Data Structures

ns_plugs_network_setting

Structure: typedef struct

{

 net_48 ethernet_address;
 short pad;
 net_32 ip_address;
 net_32 nameserver_ip_address;
} ns_plugs_network_settings;

Description: This structure is used to configure an adapter with all the
necessary network information. It is passed to the Plugs
Library routine nr_plugs_initialize() for each
adapter.

Structure member:

ethernet_address This is a 48-bit value in network-byte order. Every Ethernet
card must have a unique 48-bit MAC address. (These
addresses are managed by the IEEE. Information on
obtaining a legal Ethernet MAC address can be found at
www.ieee.org; search for OUI, Organizationally Unique
Identifier)

pad This member is unused.

ip_address This is a 32-bit IP address in network-byte order. It should
be an unused IP address within the range of the LAN
connection to the Nios-based device.

nameserver_ip_address This is a 32-bit IP address in network-byte order. If your
Nios-based device needs to establish connections with
remote network devices using their DNS names (using the
remote_name parameter of the Plugs Library
nr_plugs_connect() or nr_plugs_name_to_ip()
routines), then you must provide the name server’s IP
address for the Plugs Library to use.
34 Altera Corporation

 Software Overview

Softw
are

4

O
verview
subnet_mask This is a 32-bit value in network-byte order. This mask
value is used to determine if a particular remote network
device is on the same LAN as the Nios-based device. If any
bits of the Nios-based device’s IP address differ from any
bits of the remote network devices’s IP address, and the
corresponding subnet mask bit is set, then the remote
device is not on the LAN. The Plugs Library sends packets
for remote devices that are not on the LAN to the local
gateway.

gateway_ip_address This is a 32-bit value in network-byte order. If the Nios-
based device is communicating with devices that are not
on the LAN, it must send packets to the gateway. The
gateway is then responsible for routing packets
appropriately.

ns_plugs_network_setting
Altera Corporation 35

Software Overview
ns_plugs_persistent_network_settings

Structure: typedef struct
{
 long settings_index; // 0..3
 ns_plugs_network_settings settings[4];
} ns_plugs_persistent_network_settings;

Description: The example programs that use the Plugs Library make use
of nonvolatile network settings stored in the Flash memory.
The program hello_plugs.c lets you enter up to four sets
of network settings, and use these setting interchangeably.
The default location in the Flash memory on the Nios
development board is 0x00106000. You can direct the Plugs
Library routine nr_plugs_initialize() to use the
nonvolatile network settings selected by the
settings_index member by passing zero for the settings
parameter.

Structure member:

setting_index An integer that ranges from 0 to 3. This index determines
which of the 4 stored network settings to use.

setting An array of four elements of type
ns_plugs_network_settings. Up to four complete
network settings can be stored in the Flash memory; the one
that is used is determined by the settings_index
member.
36 Altera Corporation

 Software Overview

Softw
are

4

O
verview
Payload
Descriptions

Each protocol treats a different part of the raw Ethernet packet as the
payload. The payload is the part of the packet passed to the receive
callback procedure. The callback procedure can access the payload and all
encapsulating header information. Table 5 below describes which part of
the packet is treated as the payload for each of the supported protocols.

Table 5. Nios EDK Protocol Payload Descriptions

Protocol Payload Description Payload Protocol Type Maximum Payload
Size (bytes)

Ethernet Header portion of Ethernet packet followed
by any other contents

ns_ethernet_packet * 1500

ARP Header portion of ARP packet, which is the
payload portion of the Ethernet packet

ns_arp_packet * 28

IP Payload portion of the IP packet unsigned char * 1024

ICMP Header portion of the ICMP packet ns_icmp_packet * 1024

UDP Payload portion of the UDP packet unsigned char * 1024

TCP Sequential bytes from the stream unsigned char * 512
Altera Corporation 37

Software Overview
Notes:
Altera Corporation 38

Plugs L

5

Plugs Library Routines
Table 6 lists and describes the Nios plugs library routines.

Table 6. Nios Plugs Library

 Routine Description

nr_plugs_initialize Initializes the plug library

nr_plugs_terminate Terminates the plugs library

nr_plugs_set_mac_led Controls the LED on the RJ-45 jack.

nr_plugs_create Allocates a plug

typedef int (*nr_plugs_receive_callback_proc) Application-provided callback routine to receive data

nr_plugs_destroy Deallocates a plug

nr_plugs_connect Associates a plug with a remote IP address and port on
the network

nr_plugs_send Sends a packet to the connected remote-network
device

nr_plugs_send_to Sends a packet to a specified IP address and port

nr_plugs_listen Tells a plug to wait for an incoming TCP connection
request

typedef int (*nr_plugs_listen_callback_proc) Application-provided callback routine to accept or reject
a TCP connection request

nr_plugs_ip_to_ethernet Converts an IP address to an Ethernet address

nr_plugs_name_to_ip Uses name server to convert a remote-network device
name to an IP address

nr_plugs_idle Polls all network adapters for incoming packets and
dispatches the packets to the receive callback routines

nr_plugs_print_ethernet_packet Prints an Ethernet packet report

nr_n2h16 Translates a network-short integer to a short integer

nr_h2n16 Translates a short integer to a network-short integer

nr_n2h32 Translates a network-long integer to a long integer

nr_h2n32 Translates a long integer to a network-long integer
Altera Corporation 39 ibrary

Plugs Library Routines
nr_plugs_initialize

Syntax: int nr_plugs_initialize

 (

 long flags,
 ns_plugs_network_settings *network_settings,
 void *adapter_address,
 ns_plugs_adapter_description *adapter_description
);

Description: This routine can either initialize the plugs library, or add an
additional adapter to the plugs library. Each adapter is
completely distinct from each other. If you are using more
than one adapter, each adapter should be added using
this routine before calling any other routine. Each adapter
has its own network settings (IP address, netmask, etc.)
Only the first adapter added can perform DNS lookups.

Parameters: flags This can be 0 or ne_plugs_flag_add_adapter. If it is
ne_plugs_flag_add_adapter, then only the adapter
is initialized and added to the plugs library list of available
adapters. The first adapter has an index number of zero,
the second adapter has an index number of one, and so
forth. Some other routines use this index number to
specify a particular adapter.

network_setting A pointer to a structure of type
ns_plugs_network_settings to configure this
adapter. If the network_setting is NULL, the network
settings will be retrieved from the Flash memory.

adapter_address The hardware address of the adapter peripheral device, if
applicable.

adapter_description A pointer to a structure of type
ns_plugs_adapter_description, that determines
the low-level driver routines for this adapter.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
40 Altera Corporation

Plugs Library Routines

Plugs Library

5

nr_plugs_terminate

Syntax: nr_plug_terminate(void)

 (

 void
);

Description: Call this routine when you are done using the plugs library.
If you need to reinitialize the plugs library with different
network settings, call this routine first before reinitializing.

Parameters: None

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
Altera Corporation 41

Plugs Library Routines
nr_plugs_set_mac_led

Syntax: int nr_plug_set_mac_led

 (

 int adapter_index,
 int led_onoff
);

Description: This routine controls the LED present on most Ethernet
jacks. If a particular adapter does not have a LED on the
Ethernet jack, this routine does nothing. The CS8900A
LED’s default behavior is to be on if it is connected to a
network, or off if it is not connected to a network.

Parameters:

adapter_index The index number of the adapter to control.

on_off This parameter can have one of three values. Zero turns
the LED off, one turns the LED on and negative one
returns the LED to its default behavior as specified for the
particular adapter.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
42 Altera Corporation

Plugs Library Routines

Plugs Library

5

nr_plugs_create

Syntax: int nr_plugs_create

 (
 int *plugs_handle_out,
 int protocol,
 host_16 port,
 nr_plugs_receive_callback_proc callback,
 void *callback_context,
 long flags
);

Description: This routine creates a plug. A plug is a logical endpoint for
network communications. A plug is in some ways similar
to a traditional UNIX socket. When you create a plug, you
specify its protocol, and if applicable to the particular
protocol, its port number. You must also specify a callback
procedure. The callback procedure is called whenever
data arrives over the network for this plug. A plug is
associated with exactly one adapter.

Parameters:

plugs_handle_out This parameter is a pointer to an integer that contains a
reference to the new plug. The new plug reference is used
to specify this particular plug to other plugs library
routines.

protocol This parameter specifies which network protocol the plug
can receive and transmit. The possible values for this
parameter are as follows:
ne_plugs_ethernet

ne_plugs_arp

ne_plugs_ip

ne_plugs_icmp

ne_plugs_udp

ne_plugs_tcp

port If the plug’s protocol is UDP or TCP, then the plug must be
associated with a particular port number. If this parameter
is zero, an unused port number will be chosen for you.
Altera Corporation 43

Plugs Library Routines
callback When data arrives for this plug, your callback routine is
called with the data. The parameters of the callback
routine are documented under
nr_plugs_receive_callback_proc.

callback _context This parameter is passed unmodified to your callback
routine. It can be used to carry state information to your
callback routine.

flags Multiple flags should be grouped together using the OR
instruction with the vertical-bar operator. If you are using
more than one adapter, an integer between 0 and 15 can
be added to the value for the flags parameter. This
indicates the index number of the adapter associated with
the plug. If you are using only one adapter, then its index
is always zero. Flags can be any combination of the
following:

ne_plugs_flag_ethernet_broadcast

If the plug is Ethernet protocol, this flag transmits outgoing
packets as broadcast messages.

ne_plugs_flag_ethernet_all

If the plug is Ethernet protocol, this plug receives all
packets, regardless of whether their Ethernet address
matches this adapter’s address.

ne_plugs_flag_debug_rx

This flag prints debugging information for each packet
received by this plug. The debugging information is
printed using printf(), and appears on the same serial
port as other printf() output.

ne_plugs_flag_debug_tx

This flag prints debugging information for each packet
transmitted by this plug. The debugging information is
printed using printf(), and appears on the same serial
port as other printf() output.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
44 Altera Corporation

Plugs Library Routines

Plugs Library

5

typedef int (*nr_plugs_receive_callback_proc)

Syntax: typedef int (*nr_plug_receive_callback_proc)

 (

 int plug_handle
 void *context,
 ns_plugs_packet *p,
 void *payload,
 int payload_length
);

Description: This is a routine you provide when you create a plug. The
plugs library will call this routine whenever a packet
arrives for the plug. The plug receives the packet’s
payload and length and also a pointer to a list containing
the packet header for each network protocol layer used by
the incoming packet.

Parameters:

 plug_handle A reference to the plug that is receiving a packet.

 context The value passed for the parameter named
callback_context in nr_plugs_create().

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
Altera Corporation 45

Plugs Library Routines
p A pointer to an array of entries. These entries can be
indexed by the various network protocol enumeration
constants (the same constants used to specify the
network protocol in nr_plugs_create()). Each entry
consists of two fields, as follows:
typedef struct

 {
 void *header;

 int length;

 } ns_plugs_packet;

The header field is a pointer to the first byte of the header
for that protocol layer. If the header pointer is zero, then
the packet does not conform to the indexed protocol. The
length is the combined length of the header and payload
for that protocol layer.
For example, suppose you created a plug that was using
the TCP protocol. When your callback routine is called,
you could examine the enclosing Ethernet packet header
by reading at location
p[ne_plugs_ethernet].header. You could also
examine the enclosing IP packet header by reading at
location p[ne_plugs_ip].header. However, the values
for p[ne_plugs_arp].header,
p[ne_plugs_icmp].header, and
p[ne_plugs_udp].header will all be zero, because
these protocols are not a part of a TCP packet.

payload A pointer to the meaningful payload portion of the packet
to be received by this plug. In the case of TCP and UDP,
the payload contains the bytes transmitted.

payload_length The length of the payload. In the case of TCP and UDP
protocol, this is the number of bytes transmitted.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
46 Altera Corporation

Plugs Library Routines

Plugs Library

5

nr_plugs_destroy

Syntax: int nr_plugs_destroy

 (

 int plug_handle,
);

Description: Deallocates a plug. When you no longer need a plug, call
this routine to deallocate any resources associated with
the discarded plug.

Parameters:

plug_handle A reference to the plug you are eliminating.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
Altera Corporation 47

Plugs Library Routines
nr_plugs_connect

Syntax: int nr_plug_connect

 (

 int plug_handle,
 char *remote_name,
 host_32 remote_ip_address,
 host_16 remote_port
);

Description: This routine associates a plug with a particular remote IP address
and port on the network. If the plug is using TCP, then this routine
will perform the necessary network transaction to establish a
connection with the remote host. If the connection cannot be
established, an error is returned. If the plug is not using TCP, then
the remote address and port are stored in the plug’s state as the
default destination for packets.
This routine can be used to allow packets to be received from any
remote-network device (only if the plug does not use TCP), by
connecting to IP address –1, port –1. This routine can be useful
when providing a UDP service.
If the plug uses TCP, this routine closes an existing TCP
connection. To close a connection on a TCP plug, call this routine
with a remote IP address of 0 and a remote port of 0.

Parameters:

plug_handle A reference to the plug you are eliminating.

 remote_name A pointer to a string containing the name of a remote-network
device (for example, http://www.altera.com). The routine will
attempt to resolve the name to an IP address by using the DNS
server associated with the first adapter installed. This parameter
may be zero, in which case, the remote_ip_address
parameter is used instead.

 remote_ip_address A 32-bit value that is an IP address of a remote-network device.
This parameter is ignored if a remote name is provided for the
remote_name parameter.

 remote_port If the port uses UDP or TCP, this parameter specifies the port
number of the connection on the remote-network device.

Return Value: The return value will be zero for success or a negative value for
failure.
48 Altera Corporation

Plugs Library Routines

Plugs Library

5

1 Transmission to another plug on the same Nios system will not
succeed and loopback is not supported.

Include: plugs.h
Altera Corporation 49

Plugs Library Routines
nr_plugs_send

Syntax: int nr_plugs_send

 (

 int plug_handle,
 void *data,
 int data_length,
 long flags
);

Description: This routine transmits a packet of data using a particular
plug. Before you call this routine, you must call
nr_plugs_connect() to associate the plug with a
particular remote-network device.

Parameters:

plug_handle A reference to a plug.

 data The payload to send.

 data_length The number of bytes in the payload.

 flags This parameter augments the flags specified by
nr_plugs_create(). Typically this is used to add
ne_flag_debug_tx to one particular transmission.

Return Value: The return result will be zero for success or a negative
value for failure.

Include: plugs.h
50 Altera Corporation

Plugs Library Routines

Plugs Library

5

nr_plugs_send_to

Syntax: int nr_plugs_send_to

 (

 int plug_handle,
 void *data,
 int data_length,
 long flags,
 net_32 ip_address, //|net order
 net_16 port //|net order
);

Description: This routine is identical to nr_plugs_send(), with the
addition of a destination IP address and port. When a plug
uses UDP, you can easily send a packet to any
destination using this routine. Do not use this routine on a
plug using TCP.

Parameters:

plug_handle A reference to a plug.

 data The payload to send.

 data_length The number of bytes in the payload.

 flags This parameter augments the flags specified by
nr_plugs_create(). Typically this routine is used to
add ne_plugs_flag_debug_tx to a particular
transmission.

 ip_ address The IP address of a remote-network device. The packet is
transmitted to this remote-network device.

 port If the plug uses UDP, the packet transmits to this port on
the remote-network device.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
Altera Corporation 51

Plugs Library Routines
int nr_plugs_listen

Syntax: int nr_plugs_listen

 (

 int plug_handle,
 nr_plugs_listen_callback_proc callback,
 void *callback_context
);

Description: Only call this routine if the plug uses TCP. This routine
tells the plug to wait for an incoming TCP connection
request. If the plug is already connected to a remote-
network device, the connection is closed immediately
when this routine is called. When a connection request is
received, the callback routine you provide is called and
can accept or reject the connection request.
If there is an existing TCP connection established on this
plug, the connection is closed and the plug begins to wait
for an incoming TCP connection request.
You may create multiple TCP plugs for the same port.
When a connection request is received, each of the plugs’
callback routines will be called and the first plug to accept
the connection will be connected.

Parameters:

plugs_handle A reference to the plug.

 callback A routine you provide to accept or decline an incoming
TCP connection request. You may pass zero for this
parameter and any incoming TCP connection request will
be accepted.

 callback_context This parameter is passed unmodified to your callback
routine. It can be used to carry state information to your
routine.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
52 Altera Corporation

Plugs Library Routines

Plugs Library

5

typedef int (*nr_plugs_listen_callback_proc)

Syntax: typedef int (*nr_plugs_listen_callback_proc)

 (

 int plug_handle,
 void *context,
 host_32 remote_ip_address,
 host_16 remote_port
);

Description: This is a routine you provide when you allow a TCP plug to
accept connections using the
nr_plugs_listen()routine. This routine can accept or
decline the connection by returning a zero (meaning no error
occurred — accept the connection) or a negative value
(meaning an error did occur — do not accept the
connection).

Parameters:

 plug_handle A reference to a plug.

 context The value passed for the parameter named
callback_context in nr_plugs_listen().

 remote_ip_address The IP address of the remote-network device attempting to
connect to this plug.

 remote_port The port on the remote-network device attempting to
connect to this plug.

Return Value: Your routine should return zero to accept the incoming
connection request, or a negative value to reject the
connection request.

Include: plugs.h
Altera Corporation 53

Plugs Library Routines
nr_plugs_ip_to_ethernet

Syntax: int nr_plugs_ip_to_ethernet

 (

 int adapter_index,
 net_32 ip_address,
 net_48 *ethernet_address_out,
 long flags
);

Description: When this routine is given an IP address, it discovers
which is the correct Ethernet address for the packets
being sent. When the IP address is on the LAN, the
Ethernet address is the address for the network device;
otherwise, the Ethernet address is the address for the
local gateway.

Parameters:

 adapter_index The index number for the adapter being used.

 ip_address An IP address of a remote-network device.

 ethernet_address_out A pointer to a 48-bit Ethernet address. This routine will fill
out this structure with the discovered Ethernet address.

 flags This flag can be 0 or ne_plugs_flag_debug_tx. If the
flag is ne_plugs_flag_debug_tx and the operation
fails, then a message is printed.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
54 Altera Corporation

Plugs Library Routines

Plugs Library

5

nr_plugs_name_to _ip

Syntax: int nr_plugs_name_to_ip

 (

 char *host_name,
 net_32 *host_ip_address_out
);

Description: When this routine is given the name of a remote-network
device it queries the name server to find out the IP
address. This routine uses adapter number 0.

Parameters:

 host_name A pointer to a string containing the name of a network
device.

 host_ip_address_out A pointer to a 32-bit IP address. This routine will fill out this
value with the discovered IP address.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
Altera Corporation 55

Plugs Library Routines
nr_plugs_idle

Syntax: int nr_plugs_idle(void)

 (

 void
);

Description: This routine must be called frequently in your program’s
inner loop, or from a timer interrupt routine. It polls the
hardware device for incoming packets, and dispatches
them via each plug’s callback routine.

Parameters: None

Return Value: The return value will be negative if any errors occur.

Include: plugs.h
56 Altera Corporation

Plugs Library Routines

Plugs Library

5

void nr_plugs_print_ethernet_packet

Syntax: void nr_plugs_print_ethernet_packet(void)

 (

 ns_plugs_ethernet_packet *p,
 int length,
 char *title
);

Description: This routine prints an Ethernet packet in a friendly,
human-readable format.

Parameters:

p A pointer to an Ethernet packet.

length The length of the Ethernet packet.

title A short string printed at the beginning of each line.

Return Value: The return value will be zero for success or a negative
value for failure.

Include: plugs.h
Altera Corporation 57

Plugs Library Routines
The following routines and macros are for your general use, and are
required when you are translating between host-byte ordering and
network-byte ordering for Nios EDK-network programming.

1 Network-byte ordering is always big-endian and Nios host-byte
ordering is little-endian.

nr_n2h16

nr_h2n16

nr_n2h32

nr_h2n32

Syntax: nr_n2h16(net_16 value)

Parameters: A network-short integer

Description: Translates a network-short integer to a short integer.

Equivalent Macro: nm_n2h16

Syntax: nr_h2n16(host_16 value)

Parameters: a short integer

Description: Translates a short integer to a network-short integer.

Equivalent Macro: nm_h2n16(host_16)

Syntax: nr_n2h32(net_32 value)

Parameters: A network-long integer

Description: Translates a network-long integer to a long integer.

Equivalent Macro: nm_n2h32(host_32)

Syntax: nr_h2n32(host_32 value)

Parameters: A long integer

Description: Translates a long integer to a network-long integer.

Equivalent Macro: nm_h2n32(host_32)
58 Altera Corporation

D
evelopm

ent

13

Tools
N

ios Term
inology

6

Nios Terminology
Altera Corporation 59

The Excalibur Development Kit featuring the Nios embedded processor
and the Nios Ethernet Development Kit uses the following terms:

Table 7. Nios Acronym List

Acronym Meaning

API Application program interface

APP Application programming platform

ARP Address resolution protocol for ethernet

ASSP Application specific standard products

CPLD Complex programmable logic device

BOM Bill of Materials

CTS Clear to send

CWP Current window pointer

DIP Dual in-line package

DLL Delay-locked loop

DNS Domain Name System

DSP Digital signal processing

E Exception condition

EDN Emergency data network

EDK Ethernet Development Kit

EVB Evaluation board

FE Framing error

FTP File transfer protocol

GDB GNU debugger

GPP General purpose processor

HDK Hardware development kit

HTTP Hyper text transmission protocol

iBRK Interrupt-enable break detect

ICMP Internet control message protocol

IDC Insulation displacement connector

IDE Integrated drive electronics

iE Interrupt-enable exception condition

iFE Interrupt-enable framing error

IGMP Internet group management protocol

Nios Terminology
IP Internet protocol

IPR Interrupt priority

iROE Interrupt-enable receiver-override error

iRRDY Interrupt-enable read ready

ISA Industry-standard application

iTMT Interrupt-enable transmitter shift register empty

iTO Interrupt-enable time-out

iTOE Interrupt-enable transmitter override error

iTRDY Interrupt-enable transmission ready

LAN Local area network

LDAP Lightweight directory access protocol

LSB Least significant bit

MAC Media access controller

MIPS Millions of instructions per second

MISO Master in slave out

MOSI Master out slave in

MPLS Multi protocol label switching

MSB Most significant bit

PC Program counter

PE Parity error

PCI Peripheral component interconnect

PHY/MAC Physical inteface/ media access control

PIO Parallel input/output module

PMC PCI (peripheral component interconnect) mezzanine card

PPP Point-to-point protocol

PTF Peripheral template file

RFC Request for comment

ROE Receiver-overrun error

RRDY Reading the read only

RTS Request to send

RXD Receive

SDK Software development kit

SOPC system-on-a-programmable-chip

TCP Transmission control protocol

UART Universal asychronous receiver transmission

UDP User datagram protocol

Table 7. Nios Acronym List

Acronym Meaning
60 Altera Corporation

Nios Terminology
Notes:
Altera Corporation 61

Nios Terminology
Notes:
62 Altera Corporation

	Contents
	Nios Ethernet Development Kit
	About This User Guide
	User Guide Contents
	How to Contact Altera
	Typographic Conventions

	Contents
	Overview
	Nios Ethernet Development Kit Description
	Installed Components
	MAC Addresses

	Getting Started
	Verifying Kit Contents
	Setting Up the Daughter Card
	Installing the Hardware and Software Files
	Loading the Reference Design
	Running Example Applications
	The Hello Plugs Application Example
	Configure Your Network Settings

	The Networked-Based GERMS Monitor Application Example
	The Simple Web Server Application Example

	Daughter Card
	Daughter Card Components
	Functional Overview
	Stacking Daughter Cards
	SOPC Builder Library Component
	Connector Pinouts
	Nios System to Daughter Card Pin Map

	Software Overview
	Software Description
	System Requirements
	Protocols Supported
	LIbrary Features

	Protocols Architecture
	Standards
	ARP (RFC 826)
	IP (RFC 791)
	ICMP (RFC 792)
	UDP (RFC 768)
	DNS (RFC 1034 & 1035)
	TCP (RFC 793)

	Build Options
	PLUGS_DEBUG (Default Value = 1)
	PLUGS_PLUG_COUNT (Default Value = 6)
	PLUGS_ADAPTER_COUNT (Default Value = 2)
	PLUGS_DNS (Default Value = 1)
	PLUGS_PING (Default Value = 1)
	PLUGS_TCP (Default Value = 1)

	Byte Ordering
	Data Structures
	Payload Descriptions

	Plugs Library Routines
	nr_plugs_initialize
	nr_plugs_terminate
	nr_plugs_set_mac_led
	nr_plugs_create
	typedef int (*nr_plugs_receive_callback_proc)
	nr_plugs_destroy
	nr_plugs_connect
	nr_plugs_send
	nr_plugs_send_to
	int nr_plugs_listen
	typedef int (*nr_plugs_listen_callback_proc)
	nr_plugs_ip_to_ethernet
	nr_plugs_name_to _ip
	nr_plugs_idle
	void nr_plugs_print_ethernet_packet
	nr_n2h16
	nr_h2n16
	nr_n2h32
	nr_h2n32

	Nios Terminology

