Updates to Definition 2 and Theorem 5

Sarang Noether

July 2, 2020

Let \mathbb{G} be a finite cyclic group over \mathbb{F}_p , where p > 2 is prime. Let G be a fixed generator of \mathbb{G} . Let n, d > 1 be fixed integers. Let \mathcal{H}^p be a random oracle with codomain \mathbb{G} . Let \mathcal{H}^s_0 and $\{\mathcal{H}^s_j\}_{j=1}^{d-1}$ be random oracles with codomain \mathbb{F}_p .

Definition (Random Oracle Decisional Diffie-Hellman (RO-DDH)). We say any PPT algorithm A that can succeed at the following game in time at most t with advantage least $\epsilon > 0$ over random chance is a (t, ϵ, q) -solver of the random oracle decisional Diffie-Hellman game.

- The challenger chooses a bit $b \in \{0, 1\}$ uniformly at random.
- If b = 0, then the challenger chooses $\{r_i\}_{i=0}^{q-1}$ from \mathbb{F}_p uniformly at random, sets

$$S := \{ (R_i, R'_i, R''_i) \}_{i=0}^{q-1} = \{ (r_i G, \mathcal{H}^p(r_i G), r_i \mathcal{H}^p(r_i G)) \}_{i=0}^{q-1}$$

and sends S to ${\tt A}.$

• If instead b = 1, then the challenger chooses $\{(r_i, r''_i)\}_{i=0}^{q-1}$ from \mathbb{F}_p^2 uniformly at random, sets

 $S := \{ (R_i, R'_i, R''_i) \}_{i=0}^{q-1} = \{ (r_i G, \mathcal{H}^p(r_i G), r''_i G) \}_{i=0}^{q-1}$

and sends S to ${\tt A}.$

- A is granted access to the random oracle \mathcal{H}^p .
- A returns a bit $b' \in \{0, 1\}$; we say A succeeds if and only if b' = b.

We say that random oracle Diffie-Hellman group elements are hard to distinguish from random in \mathbb{G} if any (t, ϵ, q) -solver of this game has negligible advantage ϵ .

Remark. We assume that if the classic decisional Diffie-Hellman (DDH) game is hard in \mathbb{G} , then so is the RO-DDH game. Indeed, note that DDH asks an adversary to distinguish between distributions of tuples of the form (rG, r'G, rr'G) and (rG, r'G, r''G). If DDH is hard in \mathbb{G} , then distributions of tuples of these forms are indistinguishable. Since \mathcal{H}^p is a random oracle whose output is independent of input, then distributions of tuples of the form $(rG, \mathcal{H}^p(rG), r''G)$ and (rG, r'G, r''G) are identical. Similarly, distributions of tuples of the form $(rG, \mathcal{H}^p(rG), r''G)$ and $(rG, \mathcal{H}^p(rG), r''G)$ are identical. Finally, random self-reducibility of the classic DDH game means that solving one instance of the problem has complexity no worse than solving a sequence of random instances of the problem.

Theorem. If there exists a (t, ϵ, q) -solver of the linkable anonymity game of Definition 9 under the construction of Definition 10, then there exists a $(t + t', \epsilon/2, q)$ -solver of the RO-DDH game for some t'.

Proof. Let A be such a solver of the linkable anonymity game. We will construct an algorithm B that executes A in a black box and is a solver of the RO-DDH game, acting as the challenger for A; the algorithm will pass on \mathcal{H}^p random oracle queries to its own challenger, flip coins for \mathcal{H}^s_0 and $\{\mathcal{H}^s_j\}$ random oracle queries, and simulate signing oracle queries by backpatching. We assume that B keeps internal tables to maintain consistency between the random oracle queries needed to simulate signing oracle queries.

- B receives a set of tuples $\{(R_i, R'_i, R''_i)\}_{i=0}^{q-1}$ from its challenger, and chooses a bit $b' \in \{0, 1\}$ uniformly at random. Note that B does not know if its tuples are RO-DDH triples or not, as its challenger chose a secret bit $b \in \{0, 1\}$ uniformly at random to determine this.
- For all $i \in [0,q)$, B defines $X_i := R_i$ and records the \mathcal{H}^p oracle mapping $\mathcal{H}^p(X_i) = R'_i$. It chooses $\{z_{i,j}\}_{j=1}^{d-1}$ from \mathbb{F}_p uniformly at random, and builds a set of public keys $S := \{(X_i, z_{i,1}G, \dots, z_{i,d-1}G)\}_{i=0}^{q-1}$. B provides the set S to A.
- A returns indices i_0, i_0 to B.
- B receives signing oracle queries of the form SO(m, Q, pk), where $0 \le \ell < q$ is the index of $pk \in Q$, $pk \in S$, and |Q| = n. There are two cases, which determine how B simulates the oracle response, flipping coins for \mathcal{H}_0^s and $\{\mathcal{H}_i^s\}$ oracle queries:
 - If it is the case that $\{pk_{i_0}, pk_{i_1}\} \not\subset Q$ or $pk \notin \{pk_{i_0}, pk_{i_1}\}$, then B proceeds with its signing oracle simulation using the key pk.
 - Otherwise, there exists a bit $c \in \{0, 1\}$ such that $pk = pk_{i_c}$. In this case, B sets $c' := c \oplus b'$ and proceeds with its signing oracle simulation using the key $pk_{i_{c'}}$. This is, if b' = 0, then B simulates a signature using the requested key from the player-provided index set. If instead b' = 1, then B simulates a signature using the other key.

In either case, B parses the public key set Q provided by A. For any key $pk_i := (X'_i, Z'_{i,1}, \ldots, Z'_{i,d-1}) \in Q \setminus S$, it makes oracle queries to its challenger to obtain $\mathcal{H}^p(X'_i)$. Then B simulates the signature:

- Define a map $\pi : [0, n) \to [0, q) \cup \{\bot\}$ that maps indices of elements of Q to the corresponding elements of S (or returns the distinguished failure symbol \bot for indices not mapping to elements of S), and let $0 \le \ell < n$ be the index of $pk \in Q$.
- Choose $c_{\ell}, \{s_i\}_{i=0}^{n-1} \in \mathbb{F}_p$ uniformly at random.
- Since $pk \in S$ by construction, $\pi(\ell) \neq \bot$. Set $\mathfrak{T} := R''_{\pi(\ell)}$ and $\{\mathfrak{D}_j\}_{j=1}^{d-1}$ such that each $\mathfrak{D}_j := z_{\pi(\ell),j} \mathcal{H}^p(X_{\pi(\ell)})$.
- Define the following:

$$\begin{split} \mu_X &\leftarrow \mathcal{H}^s_0(Q,\mathfrak{T},\{\mathfrak{D}_j\})\\ \mu_j &\leftarrow \mathcal{H}^s_j(Q,\mathfrak{T},\{\mathfrak{D}_j\}) \text{ for } j \in (0,d)\\ \mathfrak{W}_i &:= \begin{cases} \mu_X X_{\pi(i)} + \sum_j \mu_j Z_{\pi(i),j} & (\pi(i) \neq \bot)\\ \mu_X X'_i + \sum_j \mu_j Z'_{i,j} & (\pi(i) = \bot) \end{cases}\\ W &:= \mu_X \mathfrak{T} + \sum_j \mu_j \mathfrak{D}_j \end{split}$$

- For each $i = \ell, \ell + 1, \dots, n - 1, 0, \dots, \ell - 1$ (that is, indexing modulo n), define the following:

$$L_i := s_i G + c_i \mathfrak{W}_i$$
$$R_i := \begin{cases} s_i \mathcal{H}^p(X_{\pi(i)}) + c_i W & (\pi(i) \neq \bot) \\ s_i \mathcal{H}^p(X'_i) + c_i W & (\pi(i) = \bot) \end{cases}$$
$$c_{i+1} \leftarrow \mathcal{H}^s_0(Q, m, L_i, R_i)$$

- B returns to A the tuple $(c_0, \{s_i\}, \mathfrak{T}, \{\mathfrak{D}_i\})$.

- A returns a bit b^* to B.
- If $b^* = b'$, then B returns 0 to its challenger. Otherwise, it returns 1.

It is the case that B wins the RO-DDH game precisely when it correctly guesses the bit b chosen by its challenger; that is, when b' = b. Hence $\mathbb{P}[B \text{ wins}] = \frac{1}{2}\mathbb{P}[B \to 0|b=0] + \frac{1}{2}\mathbb{P}[B \to 1|b=1]$.

If b = 1, then the RO-DDH challenger provided random points of the form R''_i that B used in its signatures, so A can do no better than random chance at determining b'. Since $B \to 1$ exactly when A loses the linkable anonymity game, we have $\mathbb{P}[B \to 1|b = 1] = \frac{1}{2}$.

On the other hand, if b = 0, then the RO-DDH challenger provided structured tuples that B used in its signatures, and A wins the linkable anonymity game with non-negligible advantage ϵ over random chance. Since $B \to 0$ exactly when A wins the linkable anonymity game, we have $\mathbb{P}[B \to 0|b = 0] = \frac{1}{2} + \epsilon$.

This means B wins the RO-DDH game with probability $\mathbb{P}[B \text{ wins}] = \frac{1}{2} + \frac{\epsilon}{2}$ and has advantage $\frac{\epsilon}{2}$. Further, B finishes with an added time t' used in simulating oracle queries and performing lookups. This means B is a $(t + t', \epsilon/2, q)$ -solver of the RO-DDH game, where ϵ is non-negligible.