
Report of the DUGC committee on CS 152
content and positioning

Abhiram Ranade, Parag Chaudhuri, Pushpak Bhattacharya

April 24, 2015

1 Mandate and background

The mandate of the committee was to recommend whether (a) the content
of the course CS 152, Abstractions and paradigms for programming, needs
to change, (b) its position in the curriculum should be exchanged with CS
213, Data structures and algorithms, (c) whether there is need to ensure
that the content of CS 152 does not change from year to year, (d) how the
decision is affected by the title “Departmental introductory course” given to
the curricular provision under which this course runs.

The above questions were raised in DUGC by the student member Navin
Chandak and were discussed substantially in DUGC. These discussions formed
the background to the deliberations of the committee. The discussions pro-
vided some detail (but not comprehensively) about how the course has run
over the years. There is also a description of the course in the Academic
Section documents; however this is very sketchy:

Review of the program development process, Issues in program
design, Structured programming, Data and control abstractions,
Programming with assertions. Reasoning about programs and
proving correctness of programs. Ideas behind imperative, applica-
tive, object oriented and logic programming paradigms such as
typing, expressions, pure functions, recursion, higher order func-
tions, encapsulation, inheritance, goal satisfaction, backtracking,
unification. Some of the ideas behind the implementation of the
paradigms. Course to be centered around problems and applica-
tions that demonstrate the main themes.

1



In addition, the committee also considered the anecdotal remarks made
very commonly in faculty and student discussions about how our students’
skills in programming need improvement.

2 Preliminary remarks

The intent behind CS 152, in our opinion, is to improve the programming
skills of students. The study of different paradigms is useful in this regard,
but it might be noted that the syllabus specifies the study of “Ideas behind
imperative, applicative, objected oriented and logic programming”, rather
than the study of the paradigms themselves.

The more interesting and difficult ideas in programming need to be moti-
vated by appropriate programming problems. And indeed, the syllabus sug-
gests “Course to be centered around problems and applications that demon-
strate the main themes”.

We believe that over the years different offerings of the course have stayed
close to the spirit (to the extent we have information about them). There also
have been some difficulties, for example, logic programming has been found
somewhat difficult to teach. This is partly because of shortage of time, and
also because perhaps ideas such as unification, cuts are somewhat involved.
On the other hand, ideas such as backtracking and constraint satisfaction
are very accessible.

In the largest number of offerings, the main language used in the course
has been Scheme. Scheme supports the imperative, functional, and object
oriented paradigms reasonably well. However, there is some concern whether
students end up viewing the ideas learned in the course as “ideas good for
Scheme programming”, rather than “ideas that ought be used no matter
what language you use”.

2.1 On CS 213

CS 213 is a prerequisite for almost every course in the CSE curriculum, and
could thus be considered the “spirit of CSE”, and thus a course better suited
to be the “Departmental Introductory Course”.

However, it is to be noted that the course is quite loaded with theoret-
ical/algorithmic topics. It has well established content with specific data
structures to study (e.g. balanced search trees, heaps), specific algorithms

2



(e.g. sorting and searching, breadth first and depth first search, shortest
paths, minimum spanning trees). There is a good deal of algorithmic diffi-
culty, and the spirit of the course is “theory”, even if there is a programming
lab associated with it. Even in the programming lab, the emphasis has often
been on inventing data structures, even somewhat clever ones.

2.2 Structure and Interpretation of Computer Pro-
grams

SICP, by Abelson and Sussman, has cast a long shadow on CS 152. SICP is
a heady brew that is purported to be an introduction to programming. It is
possible to read the book like a novel you cannot put down, and Sussman’s
lectures on MIT OCW from 1986 (!) are thrilling and give goosebumps. But
if we want to be enlightened rather than just enthralled, it is useful to analyze
the content and figure out just what exactly makes SICP appealing.

The first important idea is of course the model: substitution as a model
of computation. This is very attractive, since we are supposedly used to
it from Mathematics. Substitution is elegant, but by no means easy: it
takes a certain amount of mind bending to understand the nested lambda
expressions. It does have some direct tangible benefits: lack of assignments
makes proving correctness easier; in general it can be said that programs are
easier to understand if all variables are assigned a value just once. Several
of these properties were perhaps first noted in the functional programming
literature; however, many, if not all, are important and useful in imperative
programming.

The situation is more complex when we consider assignment statements.
The assignment statement of Scheme is quite different from the statement in
C++. The semantics of the latter is trivial to understand as compared to
the former. In fact, with assignments, the Scheme execution model becomes
decidedly different from C++. When functions are returned from a call, they
can refer to variables created in the call – which would really be dangling
references in C++. So in addition to the syntax, the computational model
is quite different.

SICP emphasizes many programming methodological ideas. One impor-
tant idea is that of creating embedded languages – like the language created
for manipulating mathematical formulae. Another idea is that of creating
generic (type independent) data structures/control abstractions. This was

3



impossible in C, but is reasonably convenient in C++ and similar languages.
However, the way this is accomplished in C++ is quite different from the
way it happens in Scheme.

Finally, SICP also takes programming to a very rich set of applications.
These would certainly be difficult to implement in C; but can be implemented
reasonably well in C++/Java.

The above analysis of SICP does not explain the cult following (well
deserved) that SICP has come to acquire. We believe there is a psychological
dimension to it. This concerns how SICP introduces programming.

Unlike a standard programming introduction, which is almost entirely
about arithmetic, SICP dispenses with arithmetic relatively quickly and rises
briskly to representation of algebraic expressions. Very quickly the book also
moves up to calculus, taking derivatives of algebraic expressions. To people
who have grown up with calculators, arithmetic is for children; algebra and
calculus signals to them that something higher is being discussed. Even for
arithmetic, the examples picked are not about calculation of tax or chang-
ing from Centigrade to Fahrenheit, but are about more interesting problems:
finding square roots, calculating trigonometric functions. Most introductory
programming books attempt to go easy on the reader: they take up com-
putations which the reader is sure to know. Indeed, one pedagogical theme
in introductory programming is to encourage the reader to express in a pro-
gram what he or she knows intuitively. In contrast, the Babylonian square
root algorithm presented in SICP is mysterious; the reader is stunned by
its mathematical appeal as much as its recursive expression. It is as if the
author is saying, I want to tell you something worth your time, not baby
stuff.

To conclude this analysis: many of the good things of SICP are indepen-
dent of the programming language. This includes the wealth of applications
considered, the exhortation to rise above writing programs to creating em-
bedded languages, the many ideas about programming style. On the other
hand, there are substantial deep and superficial differences between Scheme
and C++ that students will have difficulty in transferring what is learnt in
Scheme into general programming practice.

4



3 Recommendations

The committee has the following recommendations, addressing the above
mentioned issues.

3.1 Recommended content

The broad goal of the course is: greater mastery of programming motivated
by a rich range of programming problems drawn from diverse applications.

Here are some examples of specific programming style and techniques to
study:

• Avoiding use of global variables, applicative programming, higher order
functions, side effect free programming.

• Substantial practice with recursion, including structural recursion.

• Backtracking as a paradigm.

• Class design, inheritance and class heirarchies. Polymorphism.

• Design of embedded languages and general purpose libraries, in addi-
tion to individual programs.

• Reasoning about correctness. Invariants, preconditions, post condi-
tions.

The programming problems should involve irregular and symbolic data,
e.g. mathematical expressions. The course should address how to represent
and manipulate such data. The focus should be on representation and cor-
rectness, and not algorithm discovery or analysis. Problems requiring some
kind of an interpreter/embedded language should also be considred, so that
the state needs to be maintained and the set of abstract operations on the
state must be understood. Simulators, or even a library for implementing a
small-scale relational database would be good examples. Another example
is the design of a finite domain solver. Hierarchical composition of objects
(e.g., a circuit component is composed of other circuit components) must be
explored. Problems chosen must expose advanced programming techniques,
their need and usage.

5



It should be noted that CS 152 is expected to be very rigorous in its
treatment of programming. Arguing correctness is a significant part of it.
However, its focus is not efficiency.

In many ways, this content is similar to the old content. However, it is
suggested that logic programming topics such as unification be not covered.
Such topics can be covered in later courses, e.g. Logic for CS, or Artificial
Intelligence. In light of this recommendation, the name of the course could
be changed to “Advanced Programming”.

3.2 Language

It is recommended that the language used in CS 152 be C++. Note that the
student has already learned C++ in CS 101, and will use C++ (or similar
languages) in many other courses. Thus the advanced programming ideas
learned in CS 152 will be assimilated better if the language is C++.

It could be argued that some programs are better written in other lan-
guages, whereas C++ introduces some syntactic clutter. This is true, but
given that students already know C++, it may not produce too much cog-
nitive load. Also, if you consider maintainability, readability, the additional
verbiage as required by C++ might well be inevitable in other languages
too.1

If some instructors strongly want to use other languages, it should be
allowed (partly to increase the pool of willing instructors and allow exper-
imentation), but they should note the above discussion. Thus they should
talk about programming style and skill in a somewhat language independent
manner.

3.3 Placement with respect to CS 213

It is recommended that the current positions of the two courses be retained,
i.e. CS 152 in semester 2, and CS 213 in semester 3.

It is felt that CS 152 is closer in spirit to CS 101, with its emphasis on
programming, rather than on algorithm discovery and its focus on represen-
tation and correctness, rather than on clever algorithmic techniques, their
discovery and analysis. CS152 broadens the students’ vistas, and improves

1It should be pointed out that languages such as Scheme were considered very elegant
for writing programs 30-40 years ago. They still are, as compared to a language such as
C. However modern languages such as C++ and Java have made great progress over C.

6



the maturity and programming ability. These aspects will serve the student
well in taking CS 213 later.

3.4 Prerequisite structure

In principle, CS 152 could be considered to be a prerequisite for CS 213; how-
ever, this will prevent branch change students from taking CS 213, because
CS 152 would be done in semester 2 before they arrive into the department.
Since all students do CS 152 by semester 4 anyway, we could ignore this
issue. Or alternatively, we could designate CS 152 as a prequisite for subse-
quent courses which are heavy on programming. For example, the courses
on compilers or artificial intelligence.

3.5 Departmental introductory course

Because of its breadth, it is felt that perhaps CS 152 as recommended here
will be a good departmental introductory course. It can, after all, have
applications drawn from artificial intelligence, parsing, data bases, circuit
design, and simulations (e.g. deadlocks).

This is not to deny that CS 213 is a more important course. However,
perhaps CS 152 is better suited for the first year.

3.6 A pragmatic consideration

Pragmatically, note that CS 152 also tries to fill gaps left, if any, from the
student’s training in CS101 and bring everybody up to a level of programming
proficiency that makes them well equipped to handle subsequent courses.

3.7 Consistency across offerings

Consistency across offerings is desirable, but some experimentation is also
desirable to keep improving the course.

It is hoped that this document clarifies the spirit of the course and will
thus serve as a guide in this respect.

7


