
Personal Information

Name: Ashutosh Aswal

IRC nick: yellowhatpro

Email: yellowhatpro3119@gmail.com

Github: yellowhatpro

Time Zone: UTC+05�30

RustBrainzDB: Rust bindings for the
MusicBrainz database
Project Overview

MusicBrainz has a large database of different entities and
relationships. There are various applications that can be built on top
of this huge database. With Rust gaining popularity, we need a way for
rustaceans to access the musicbrainz entities, so that they can create
cool applications on top of musicbrainz database.
The project aims to initiate rust development in the brainz family by
generating rust mappings for the musicbrainz schema, and create an
application to make use of it.
The application will be a standalone rust program that polls
musicbrainz database, queries URL relationships from edit_note and
edit_data tables, and saves them using Wayback Machine API.

My contributions up till now:

Up till now, my main focus was to make the existing sql-gen project
compatible with the musicbrainz schema. With the project working, we
are able to build a binary, which can generate all the rust types and
important queries to work with the database.
I have made the generated entities available as a github repository,
currently mb-rs, so that they can be used with the rust application we

Fixes for sql-gen

mailto:yellowhatpro3119@gmail.com
https://github.com/yellowhatpro
https://github.com/yellowHatpro/sql-gen
https://github.com/yellowHatpro/Rust-Playground/tree/main/mb-rs
https://github.com/jayy-lmao/sql-gen/compare/main...yellowHatpro:sql-gen:main

are coming up with.
At the moment, they have successfully compiled, but there might be
runtime issues, so we can fix them as we proceed with the application
development.

Implementation
The idea is to test the generated rust entities with a fully
functional application. Therefore, the objective of the proposal will
be developing a rust app, while continuously maintaining the rust
entities. By the end of the project, we will have a working set of
entities for musicbrainz schema, ready to be published, and an app
running on top of it.

Here are 4 broad aspects of the implementation:

1. Making the sql-gen library working

The sql-gen library is a great tool to generate rust types for
postgres databases schemas. It uses sqlx crate under the hood, which
is a really nice tool for writing SQL queries. The problem with sql-
gen is, it does not very well map with postgres types, which caused a
lot of errors in generating the rust entities. To deal with this, new
mappings were added:
"_int8" => "i64", "_int4" => "i32", "_int2" => "i16", "_text" => "String",

"time" => "chrono::NaiveTime", "jsonb" => "serde_json::Value", "bool" => "bool",

"bpchar" => "String", "char" => "String", "character" => "String"

sql-gen also panicked on custom musicbrainz types, like EditNoteStatus ,
Fluency , CoverArtPresence , etc. As a fix, respective rust enums were
added.
All these fixes and more can be seen here.

2. Generating rust types and functions for the
database using sql-gen and publishing the crate

Once sql-gen is able to generate all the musicbrainz types and
necessary database functions, the task is to make the generated types
accessible for everyone. While in development, we can go with the
github version of the library, currently mb-rs, where the generated
rust types are available. As we proceed to the end of the program, we
will publish the crate as well.

https://github.com/jayy-lmao/sql-gen/compare/main...yellowHatpro:sql-gen:main
https://github.com/yellowHatpro/Rust-Playground/tree/main/mb-rs

However, what good are the mappings if we have no app using it?

Now, we can start working on our rust app. The rust app has 2 main
functions:

3. Interacting with the database

Interaction with the database is the first challenge. Having multiple
ways to query the database, the preferred and easier solution, which I
found on discussion in IRC is polling. Additionally, a cache layers
will be sitting between the app and the database, ensuring we don't
query same item twice in a day.

4. Saving the URLs using the Wayback Machine APIs

The other interface of the app interacts with the Wayback Machine,
saving the queried URLs.
This is the API we will be interacting with:

Since there is rate limiting associated, we need to self rate limit
our requests.
However, this particular section can be decoupled from the poll
results, as we can extend its use case for more tasks, such as re-
archiving links which can be changed later by artists, like spotify,
itunes, which also need to be rate-limited.

This is just a high level overview of the core architecture. Expect
more engineering tasks to be delivered :)

1. Interacting with the database, and querying URLs, (and this is
where our rust bindings will shine)

2. Save the queried URLs using Wayback Machine APIs

Timeline
Following is the timeline for the 350 hours of GSoC coding period I'll
be devoted to:

Community Bonding Period :

Week 1

Week 2

Week 3

Week 4

Week 5

Discuss various engineering aspects with the mentors, including
caching, polling, rate limiting.

Start with setting up of environment for development, which
includes writing container scripts, setting up required
dependencies needed to run the project.
Setup a basic rust project to meet the requirements
This will involve a db connection, and a reqwest method to save the
URLs.

Discuss and implement database queries and constraints, e.g.
skipping edits of editors marked spammers.
The objective of this week will be to get desired results from
database.

Working on the cache layer.
This will include setting up and integrating redis with our running
app.
Devise cache strategies to prevent duplicate URLs to be saved.

Work on database polling mechanism.
This will require a postgres function that uses a cursor to fetch
data from db, which can be called from the rust app using sqlx .

Week 6/7

Week 8

Week 9/10

Week 11/12

Stretch goals

Work on the self-rate limiting, so that we do not exceed rate
limits imposed by Internet Archive.
A rate limited queue implementation will be required to do this
task.
As per Internet Archive, the current limit is 15 saves per minute,
therefore we need to create a queue implementation, that delays the
next request for some time. This seems a workable idea as of now,
but we can have more ideas on discussion ahead.

Work on the corner cases, which arise when editor edits or deletes
their edits
This might require notify mechanism of the database, but again, a
little chat with mentors might be required.
There are still pending edits stored in the tables which we can
save using Wayback Machine.

This will be a detached project from current container, and run
independently from the current app.

Work on analytics and testing of the app.
This will include integrating analytics tools with the container,
and piping the logs to necessary location.

This week will involve deploying the container to appropriate
registry, and automating the process of deploying the container
app.
Fix any post-deployment bugs.

Finalizing work and documenting it.
Publishing the rustbrainz-db crate.
Start working on other ideas of IE integration.

https://archive.org/details/toomanyrequests_20191110

Detailed Information About Yourself
My name is Ashutosh Aswal. I am a senior pursuing Bachelors in CSE
from Punjab Engineering College, Chandigarh, India. Having contributed
to Android Projects before, now I want to explore new domains of tech
and gain hands on experience.

Tell us about the computer(s) you have available for
working on your SoC project!

I have my HP Pavilion ec0101ax running Arch Linux, with Ryzen 5 3550H
and 24 gigs of RAM.

When did you first start programming?

I began my programming journey with C�� in 11th grade.

What type of music do you listen to? (Please list a
series of MBIDs as examples.)

I mostly listen to Indie music artists like The Local Train, Nikhil
D'Souza, Anuj Jain etc.

What aspects of the project you’re applying for
interest you the most?

I like exploring new tools and languages in my free time. In recent
times, I started exploring rust, and wanted to build some stuff with
it. Other than that, I like how this particular project is introducing
different engineering concepts which I have only read about, and I'd
get a change to implement them.

Have you ever used MusicBrainz to tag your files?

Honestly, the main project can end sooner than expected, given we
don't run into unexpected errors. But if we get lucky, my task in
hand will be to work on 2 more IA integrations:
1. Re-archiving links which can be changed later by artists, like

spotify, itunes.
2. Musicbrainz DB Dumps automation.

https://musicbrainz.org/artist/93e6118e-7fa8-49f6-9e02-699a1ebce105
https://musicbrainz.org/artist/7cb21862-2ee0-453a-93d7-be92e1c08357
https://musicbrainz.org/artist/7cb21862-2ee0-453a-93d7-be92e1c08357
https://musicbrainz.org/artist/addca31a-40ae-4152-afb8-a477da5191f0

Yes, I have.

Have you contributed to other Open Source projects?
If so, which projects and can we see some of your
code?

I have earlier contributed to the Metabrainz android projects,
musicbrainz-android, and listenbrainz-android.

What sorts of programming projects have you done on
your own time?

I have prior experience in android development, and in my free time, I
love to explore different other tech stacks and frameworks.

i-remember: A cli tool in rust to save shell commands, batch them,
and reuse them. (WIP)
codes-practice : A react app to show my code solutions to various
algorithmic problems, and competitive programming problems.
Apart from them, I have many undeployed, half-baked, good-for-
nothing projects I cook in free time.

https://github.com/metabrainz/musicbrainz-android
https://github.com/metabrainz/listenbrainz-android
https://github.com/yellowHatpro/i-remember
https://codes-practice.vercel.app/

How much time do you have available, and how would
you plan to use it?

I will be working ~30 hours per week on the project.

