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Abstract. As of September 2019, Monero is the most capitalized privacy-
preserving cryptocurrency, and is ranked tenth among all cryptocurren-
cies. Monero’s on-chain data privacy guarantees, i.e., how mixins are
selected in each transaction, have been extensively studied. However, de-
spite Monero’s prominence, the network of peers running Monero clients
has not been analyzed. Such analysis is of prime importance, since po-
tential vulnerabilities in the peer-to-peer network may lead to attacks on
the blockchain’s safety (e.g., by isolating a set of nodes) and on users’
privacy (e.g., tracing transactions flow in the network).

This paper provides the first step study on understanding Monero’s peer-
to-peer (P2P) network. In particular, we deconstruct Monero’s P2P pro-
tocol based on its source code, and develop a toolset to explore Monero’s
network, which allows us to infer its topology, size, node distribution,
and node connectivity. During our experiments, we collected 510 GB of
raw data, from which we extracted 21,678 IP addresses of Monero nodes
distributed in 970 autonomous systems. We show that Monero’s network
is highly centralized — 13.2% of the nodes collectively maintain 82.86%
of the network connections. We have identified approximately 2,758 ac-
tive nodes per day, which is 68.7% higher than the number reported by
the MoneroHash mining pool. We also identified all concurrent outgoing
connections maintained by Monero nodes with very high probability (on
average 97.98% for nodes with less than 250 outgoing connections, and
93.79% for nodes with more connections).

1 Introduction

As blockchains aim at implementing decentralized and trustworthy systems, they
often rely on peer-to-peer (P2P) protocols for membership management and
information dissemination. This makes the P2P network a critical element of
blockchains, as the security of the underlying consensus protocols and the privacy
of transactions are all tightly related to its implementation [1,2,3,4,5,6,7].
Monero is a privacy-centric cryptocurrency, and is currently ranked the first
among privacy-preserving cryptocurrencies with a market capitalization of 1.248
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Billion USD, and the 10th among all cryptocurrencies'. Much research has been
done on analysing the privacy of Monero [8,9,10,11,12], with a focus on on-
chain data analysis, i.e., how the mixins (a.k.a. decoy inputs) are selected in
each transaction and how they provide privacy guarantees. However, little re-
search has been done to investigate Monero’s P2P network, even though net-
work level attacks have been studied on the specific networks of Bitcoin and
Ethereum [1,2,3,13,14,15].

Analysing the resilience of a blockchain to network level attacks is challeng-
ing, as it requires a deep understanding on the underlying network. In this paper,
we present a first step of work towards analysing Monero’s security and privacy
against network level attacks. In particular, we perform an analysis of Monero’s
network protocol, and identify possible ways to infer the network topology. We
develop a toolset to implement our findings. Our tool set includes NodeScanner
and NeighborFinder. NodeScanner automatically discovers peers in the Monero
network, no matter whether they are currently online or not. We classify the dis-
covered peers in three categories, namely active and reachable nodes, active and
unreachable nodes, and inactive nodes. A node is active if it is currently online,
and is reachable if NodeScanner can successfully connect to it. Compared to
previous works [16,17,18,6], NeighborFinder is able to identify the unreachable
active nodes in the network, which are the active direct neighbors of nodes that
could be reached, for the network topology inference.

Our experimental results show that Monero’s network is highly centralized
— 0.7% of the active nodes maintain more than 250 outgoing connections, and
86.8% of the nodes do not maintain more than 8 outgoing connections. These
86.8% nodes collectively maintain only 17.14% of the overall connections in the
network. Our toolset is also very effective in observing the network — after a
single week of data collection, our toolset already discovered 68.7% more active
peers than Monerohash [19] — a Monero mining pool that is the only known
pool providing data on the Monero node distribution. On average, our toolset
identified approximately 2,758 active nodes per day, while Monerohash only
showed about 1,635 active nodes. Furthermore, we report our analysis of the
collected data regarding an estimation of our network coverage, the network
connectivity, and the node distribution in the Monero P2P network.

Our contributions are summarized as follows:

— to the best of our knowledge, our work is the first to describe how to infer
Monero’s peer-to-peer network, which would enable further studies on the
network level security analysis of Monero;

— we provide the first toolset to implement our findings on exploring the Mon-
ero peer-to-peer network. In particular, NodeScanner explores existing and
historical nodes in the Monero network, and NeighborFinder identifies neigh-
bors of the Monero nodes. We plan to release our toolset as an open source
project shortly; and

! https://coinmarketcap.com. Data fetched on Sept. 12, 2019.
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— we conduct an experiment to evaluate Monero’s network, and show the ef-
fectiveness of our methods. We provide insights and a security analysis of its
network size, distribution, and connectivity.

Disclosure. We have disclosed our research findings to the Monero team,
which has been working on patching the peer-to-peer protocol, and publicly
acknowledged our findings in their git commit?.

The remaining of this paper is organized as follows. Section 2 provides a
high level overview on the different designs of P2P protocol in different major
cryptocurrencies, and highlights the particularities of Monero’s P2P member-
ship protocol. Section 3 provides an overview of our analysis pipeline, and the
algorithms we used to implement the discovery of the nodes and the inference
of their connections. Section 4 details the results obtained after analyzing the
data collected during one week, and provides a discussion on the privacy and
security issues that can arise after a P2P network exposure. Section 5 reviews
related works, and we conclude this paper in Section 6.

2 DMonero’s P2P membership protocol

Peer-to-peer (P2P) networks have been designed and extensively studied to al-
low decentralized message exchanges. They have been getting a renewed at-
tention since Satoshi Nakamoto described Bitcoin in 2008. Indeed, inspired by
Bitcoin, thousands of cryptocurrencies serving different purposes have been cre-
ated. However, no standard P2P protocol has been proposed for blockchains.
Instead, different P2P protocols have been designed and adapted by different
cryptocurrencies [30,31,33].

Monero relies on its peer-to-peer network to disseminate transactions and
blocks. Unfortunately, a proper presentation of Monero’s peer-to-peer protocol
has been missing from the literature. This section describes Monero’s peer-to-
peer membership protocol based on its source code, which is available from
Monero’s official working repository?.

2.1 Initialization

Monero hardcodes a set of hostnames, which can be translated to IP addresses
through the DNS service, and IP addresses of seed nodes that new participants
can contact to be bootstrapped into the peer-to-peer network. Those seed nodes
are operated by the Monero core team.

New joiners can obtain a limited number of active peers’ IP addresses from
the seed nodes to initialize their peer lists. They can then start initiating con-
nections with peers, exchange membership lists and discover other peers, until
they have established their desired number of connections.

2 https://github.com/monero-project/monero/blob/
960¢c2158010d30a375207310a36a7a942b9285d2/src/p2p/net_peerlist.h.

3 Commit hash 14a5c2068f53cfelaf3056375fed2587bc07d320, https://github.com/
monero-project/monero.
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Fig. 1: Message exchange in the Monero network

2.2 Peer list

In Monero, each node maintains a peer list consisting of two parts, i.e., a
white list, and a gray_list. In the peer list of a peer A, the information of
each recorded peer not only contains its identity, its IP address, and the TCP
port number it uses, but also a special last_seen data field, which is the time at
which the peer has interacted with peer A for the last time. All the peers in the
lists are ordered chronologically according to their last_seen data, i.e., the most
recently seen peers are at the top of the list.

Each time a node receives information about a set of peers, this information is
inserted into its gray_list. Nodes update their white_list and gray_list through
a mechanism called “graylist housekeeping”, which periodically pings randomly
selected peers in the gray_list. If a peer from the gray_list is responsive, then
its information will be promoted to the white list with an updated last_seen
field, otherwise it will be removed from the gray_list. To handle idle connections,
nodes check their connections through the IDLE_HANDSHAKE protocol, and
update the last_seen fields if they successfully connected to the corresponding
neighbors, otherwise they drop the associated connection. Nodes also periodi-
cally handshake their current connections, and update the last_seen field of the
associated responsive peers. If a peer does not respond to the handshake request,
then the requesting node will disconnect from this neighbor, and connect to a
new neighbor chosen from the white_list. The disconnected peers will stay in
the white_list. The maximum sizes of the white_list, and of the gray_list, are
equal to 1,000 and 5,000, respectively. If the number of peers in these lists grow
over the maximum allowed size, then the peers with the oldest last_seen fields
will be removed from the list.

Nodes broadcast messages (e.g., transactions and blocks) to their neighbors
through TCP connections. Nodes choose their neighbors from the white_list.
If not enough peers from the white list are currently online, then a node will



choose its neighbors from the gray_list. Nodes to which previous connections
were established are classified as anchor nodes, and stored in the white_list.
Monero ensures that every node is connected to at least two anchor nodes to
prevent a node from being isolated by an attacker. To discover other participants,
nodes exchange membership messages by sending a TCP SYN message to their
neighbors. Upon receiving a SYN message, the neighbors create a message whose
payload contains detailed information of its top 250 peers in the white_list, and
send it back to the requester. The requester inserts the received peer data into
its gray_list, and runs the graylist housekeeping protocol to update the lists.
More details about the TCP connection and data transmission will be presented
in Section 2.3.

2.3 Information propagation

By default, each peer maintains 8 outgoing connections and accepts 1 incoming
connection. A peer residing behind a firewall or a NAT does not accept incoming
connections, and only maintains 8 outgoing connections. Peers are allowed to
define their maximum number of outgoing and incoming connections. Monero
recommends peers to increase the number of their connections according to their
capacity, for an improved network connectivity.

Three types of messages are propagated in Monero, respectively containing
peers information, transactions, and blocks. A node establishes connections with
others through a TCP handshake (SYN-SYN-ACK) as illustrated in Figure 1,
and can subsequently exchange peer information through the established con-
nection.

3 Analysis pipeline overview

In this section, we introduce the different data structures and the processes we
implemented, along with the associated network tools they rely on. We also
detail our algorithmic approaches to monitor the active Monero nodes and to
infer their neighbors. The analysis pipeline is illustrated in Figure 2.

3.1 Construction

We deploy full Monero nodes to collect data in the Monero network. These nodes
establish connections with peers in the network, and store packets into their local
storage. We adapt two network measurement tools, i.e., tcpflow* and nmap®, to
collect data and analyze the Monero network. As mentioned in Section 2, each
received TCP packet contains the most recent 250 IP addresses of the sender’s
white_list. Thus, all received IP addresses are recent out-bound peers of the
sender. We then use our first tool, NodeScanner, to collect the IP addresses of

4 https://www.tecmint.com/tcpflow-analyze-debug-network-traffic-in-linux/.
® https://nmap.org/.
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Fig.2: Analysis pipeline overview

discovered Monero nodes and store them in the NodePool. We use our second
tool NeighborFinder to infer the neighbors of reached nodes that sent the TCP
packets to collectors, and store them in the ConnectionPool. Each connection
consists of a node we reached and of its neighbor, which are both active. We
introduce in greater details our developed tools in Section 3.3.

3.2 Neighbor inference based on membership messages

As introduced in Section 2.2, Monero clients execute a gray list housekeeping
protocol and an idle connections prevention protocol to evict inactive nodes
from their peer list. As a consequence, the outbound neighbors of a node are
often associated with the freshest last_seen in its peer list, which enables the
identification of a node’s neighbors from the membership messages it sends.

3.3 Nodes discovery and connections inference

Our deployed nodes accept incoming connections and initiate outgoing connec-
tions to receive TCP packets from other nodes. Let P = {Py, P2, P, ..., P;} be
the set of j TCP packets a collector receives from a reached node, such that
each packet Py, (k € [1,7]) contains a set Ay = {Ak.1, Ak2, Ak 3, ...; Ak.250} of IP
addresses and a set Ty, = {Tk.1,Tk,2: Th,3, - Lk 250 } Of last_seen timestamps.

NodeScanner. After having received a set P of packets from node N,
NodeScanner identifies the set A = {A1, As, As, ..., A;} of included IP addresses,
extracts the set U = A1 UAy U A3 U...U A; of unique IP addresses from A, and
inserts all unique IP addresses into the NodePool.

NeighborFinder. Our second tool aims at identifying a set Ny of neighbors
from each Py (k € [1,7]). Over the various packets P; to P;, it identifies the
overall set of neighbors N = N;y U Na U N3 U ... U N;. In the following, we first
indicate our neighbors inference approach based on the time difference of the
nodes’ last_seen timestamps in a single packet, and then refine this approach by
relying on several received packets.



Neighbors inference based on a single packet. For any received packet
Py from a node N, we assume that it contains r < 250 neighbors. Because all
neighbors of N are updated at the same time, the neighbors of A/ tend to be the
first r adjacent IP addresses of Ay, and the difference between any two neighbors’
timestamps tends to be small. If we assume that there is a maximum time
difference 1% between the timestamps of any two neighbors, then we can extract
a set N]é = {Ak,i7Ak,i+laAk,i+27 ---7Ak,i+r—1| re [1,250], 1€ [1,251 - ’/’], Vo €
[i,i+ 71 —1],Tk s — Tkor1 < p} of neighbors from Py as shown in Algorithm 1.

Algorithm 1: Neighbors inference based on a single received packet
Input : Py: Packets;
: The maximum time difference between the last_seen timestamps of
a node’s neighbors;
Ay the IP addresses of Pg;
Ty: the last_seen timestamps of Py
Output: Neighbors set Nj;

1 for (y =1,y < 250,y++) do

2 if Tkﬂy - Tk’(y+1) < 1% then

3 | Ni+— Ay

4 end

5 if Tk‘(y+1) - Tky(y+2) > W then
6 ‘ N;/C — Ak,(y+1)§ break

7 end

8 end

Each node iteratively checks its connections through the IDLE_ HANDSHAKE
procedure, which makes a node send SYN packets to all of its neighbors. Fol-
lowing this procedure, the last_seen timestamps of handshaked neighbors are
updated with the current time if nodes can be contacted, otherwise connections
are dropped. This mechanism prevents idle connections to be maintained. How-
ever, the answers to the SYN packet can be received at a different time, which
leads to different answer delays. It is therefore necessary to set p to a value
that is large enough to discover all neighbors, but small enough to limit false
positives. This problem only exists when we rely on a single packet to infer the
neighbors of a target node, and disappears when multiple packets are used.

Improved neighbors inference based on multiple packets. During a
connection with a node, it frequently happens that our monitoring nodes suc-
cessively receive multiple packets from a node. If an IP address appears in suc-
cessive packets, and its last_seen has been updated, then we can conclude that
the node corresponding to this IP address is a neighbor of the sender. We use
the set N = {A’%y | s Ak,y = A(kJ’,l)’z, Tk7y #* T(k:Jrl)’Z’ Ak,y € Py, Tk,y € Py,
Aet1),2 € Pig1), Tiig1),2 € Pes1)} to denote the IP addresses that have been

5 We set p to the value of the IDLE_HANDSHAKE interval, i.e., 60 seconds.



Algorithm 2: Neighbors inference based on two received packets

Input : Packets Py and Pyq1);
Ak, A(41): the IP addresses in Py, resp. Pri1;
Tk, T(k+1): the last_seen timestamps in Py, resp. Pri1;
Output: Neighbors set N};
1 foreach A, = A(p41),. do
2 if Tkﬂy 7é T(k+1),z then

3 | N — Apy
4 end
5 end

updated between packets Py and P(;41). We then extract the neighbors of node
N following Algorithm 2.

4 Experiments

This section describes our experimental settings, validation approach, data anal-
ysis methods and results. We also discuss the potential threats of a network
topology exposure.

4.1 Settings

We deployed four full nodes in the Monero network: two in the U.S. (California
and Virginia), one in Europe (Luxembourg), and one in Asia (Japan). Each
node ran on an Ubuntu 16.04 machine with an Intel Xeon Platinum 8000 series
processor. We make use of the four nodes not only to collect data, but also to
have access to a ground truth and verify our neighbor inference algorithms.

We manually modified the settings on our Monero nodes so that they could
establish the largest number of connections with other nodes. First, we set the
maximum number of incoming and outgoing connections to 99,999 to force our
nodes to actively search for new neighbors. Second, we modified the number of
opened files, socket receive buffer, and socket send buffer of used machines to
the maximum number (1,048,576, 33,554,432, 33,554,432 respectively) in order
to simultaneously maintain a large amount of TCP connections.

We collected 510 GB of raw data containing 12,563,962 peer list messages (as
shown in Table 1). We extracted 21,678 IP addresses, which belong to 970 ASs”.
Out of these collected IP addresses, our nodes established connections with 3,626
peers, and identified 703 peers to which no connection could not be established,
but that were active and connected to reached nodes. We say that peers are
active and reachable if our nodes can establish connections with them. We say
peers are active but unreachable if they are connected to nodes we connected to

" We use the whois (https://www.ultratools.com/tools/ipWhoisLookup) database to
find the ASN for each IP address.



Table 1: Data collected from Tokyo (T), Luxembourg (L), California (C), and
Virginia (V)

#Received Peer List Messages Node Connection
T: 1,971,514; L: 2,308,968 IP Addresses|ASN|Host Level|AS Level
C: 3,892,225; V: 4,391,255 21,678 970 [338,023 87,013

and if a connection could not be established with them. We say a peer is inactive
if it is neither connected to our nodes, nor connected to responsive peers. If our
nodes were not able to connect to a peer, then it either meant that the peer
was already fully connected during the data collection, or that it was offline. To
reduce the number of possible false negatives, we consider that a peer is offline
if the peer is not connected to our nodes or to the neighbors of our nodes, and
if their last_seen has not been updated during the data collection process.

4.2 Validation

We used the node in Luxembourg to establish three connections with the nodes
in California, Virgina, and Tokyo respectively. We compared the identities of
the nodes identified by NeighborFinder as neighbors with the ground truth of
our deployed nodes. Since the payload data of membership messages can contain
at most 250 IP addresses, a part of a node’s neighbors could not be observed
in a single message when it maintained more than 250 outgoing connections.
Therefore, we specifically set up a node maintaining more than 250 outgoing
neighbors in Tokyo to verify our algorithms. The validation reported a precision
of 100% with 97.98% recall (i.e., all inferred neighbors were real neighbors, and
2.12% of the nodes identified as Non-neighbors were false negatives) when the
number of neighbors is smaller than 250, and a precision of 100% with 93.79%
recall for the node in Tokyo.

4.3 Measuring the network coverage

Previous tools [20,21,22,23] relied on the number of reached nodes to estimate
their network coverage in Bitcoin and Ethereum. However, unreachable active
nodes, which are also a part of the nework, have been overlooked by these tools.
In this section, we introduce our method, which takes unreachable nodes into
account, to estimate the network coverage. We show the effectiveness of our tools
by comparing our results with the data provided by the MoneroHash mining
pool [19].

NeighborFinder determined the neighbors of reached nodes even when it was
not possible to contact them. This allowed us to:

— identify the fully connected nodes. When a node has reached its maxi-
mum number of incoming connections, it does not accept any new inbound
neighbor. In this case, previous approaches cannot identify these fully con-
nected active nodes. However, NeighborFinder can discover them through
the connections they have established with reached nodes.
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Fig. 3: Analysis of the collected IP addresses during the data collection process.

— estimate the network size by observing the proportion of unreached
active nodes. Unfortunately, there is no ground truth to validate the net-
work size in permissionless blockchains. We use 2% “"”“%’ed active nodes ¢

num. collected nodes

[0,1] as a metric to estimate the proportion of the Monero network that

has been reached. In practice, our tools have discovered almost all long-term

running nodes in the network when the new reached nodes cannot present in-
formation about any new nodes. The overall proportion of unreached active

nodes is illustrated in Figure 3(d).

We present the data collection statistics in Figure 3, where we respectively
show the data collected by the node in California in red, Virginia in black, Japan
in yellow, and Luxembourg in green. The total number of reached nodes is rep-
resented in blue. Figure 3(a) shows the number of discovered peers. Figure 3(b)
shows the number of active nodes connected to our servers. Figure 3(c) shows
the number of active but unreachable peers. Figure 3(d) shows the evolution
of proportion of unreached active peers. After the first 80 hours, the propor-
tion of unreached active nodes are stabilizing, which means that our toolset has
detected almost all the long-term running active nodes. Thus, it is likely that
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the Monero network contains around 2,758 active nodes per day as shown in
Figure 4. Compared with Monerohash [19], which discovered 1,635 active nodes
in average per day, the number of active nodes we discovered is 68.7% higher
than the number reported by the MoneroHash mining pool. To the best of our
knowledge, Monerohash is the only Monero mining pool providing information
related to the number of active nodes in the network. Moreover, the number of
daily active nodes in Bitcoin [20] and Ethereum [21] is estimated to be close to
10,000. It is not a surprise to see that Monero has far less daily active nodes
than those two more largely used cryptocurrencies.
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Fig. 4: Active nodes discovered daily by NeighborFinder and MoneroHash.

4.4 Node distribution

In a cryptocurrency P2P overlay, different nodes play different roles and exhibit
various connectivities in a real world implementation. It is essential to analyze
how nodes are connected and located in the network to measure the resilience of
the blockchain systems to network level attacks, which are surveyed in Section 5.
In this section, we present the experiment results regarding to peer freshness,
connectivity, and node distributions alongside with their implications.

Peer freshness. Our approach shows that only about 20% (i.e., 4,329) of
the discovered nodes were active, and the remaining nodes were offline during
the data collection period. This indicates that a majority of the exchanged IP
addresses are inactive in Monero’s network, and might decrease the network
connectivity.

Connectivity. We say that a node is of degree N if it maintains at most
N outgoing connections. We classify active nodes into three categories based on
their degree: light node (degree<8), medium node (8<degree< 250), and heavy
node (degree>250). As shown in Table 2, most of the nodes (86.8%) collectively

11
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Fig.5: Snapshot of the Monero network obtained after one hour. Each dot rep-
resents a Monero node, whose darkness is proportional to the number of connec-
tions it maintains. The lightness of lines denotes their uptimes.

maintain only 17.14% of the connections, while the remaining 13.2% of the nodes
maintain 82.86% of the connections. On the other hand, Monero has hardcoded
8 seed nodes in the system, and we initially suspected that all of them would be
heavy nodes. Our experiments showed that only 3 of the seed nodes were active,
and that two of them were heavy nodes, while another one was a medium node.
Later on, we contacted the Monero team for clarification, and they confirmed
that 5 seed nodes were not available®.By comparing the discovered heavy nodes
with public Monero mining pools’ and seed nodes'’, we found that 9 heavy
nodes are maintained by mining pools, and that 2 heavy nodes are Monero seed
nodes. Due to the lack of public information, we could not identify the other 17
heavy nodes. However, we assume that the remaining unidentified heavy nodes
are likely to be the front-end nodes of private mining pools.

Table 2: Number of active nodes in the ConnectionPool.
Light nodes|Medium nodes|Heavy nodes|Total
Reached 3146 (86.8%) |452 (12.5%) 28 (0.7%) 3626
Unreached|- - - 703
Total 3146 452 28 4329

8 https://github.com/monero-project/monero/issues/5314.
9 http://moneropools.com/.
10 https://github.com/monero-project/monero/blob/
577a8f5c8431d385bf9d11c30b5e3e8855c16¢cca/src/p2p/net_node.inl.

12


https://github.com/monero-project/monero/issues/5314
http://moneropools.com/
https://github.com/monero-project/monero/blob/577a8f5c8431d385bf9d11c30b5e3e8855c16cca/src/p2p/net_node.inl
https://github.com/monero-project/monero/blob/577a8f5c8431d385bf9d11c30b5e3e8855c16cca/src/p2p/net_node.inl

Snapshot of the Monero network topology. We collected snapshots of
the network topology thanks to the ConnectionPool, which continuously records
the connections’ updates. Those snapshots provide useful information concerning
the network structure. We represent a one hour snapshot of the Monero network
topology observed on 12/24/2018 in Figure 5. It is obvious that an user’s 1P
address is exposed along with its connections. This leaves a chance for the ad-
versary to identify different roles (miner or client) in the network depending on
their connectivity. On the other hand, we hypothesize that the vast inequality
of node connectivity (In our experiment, the heaviest node could maintain more
than 1000 connections, the lightest node just maintain 8 connections) might lead
to network vulnerabilities [24], where the high degree node could significantly
affect low degree node to select neighbors.

Geographic distribution. We present in Figure 6 the location of the Mon-
ero nodes depending on their classification. Approximately 50% of the heavy
nodes, which are likely the mining pools, are located in the US, while the light
nodes, which are likely clients, are more evenly distributed around the world.
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(a) Light nodes. (b) Medium nodes. (c) Heavy nodes.

Fig. 6: Nodes location distribution

Degree distribution. Monero’s peer-to-peer network is unstructured, per-
missionless and very dynamic. In particular, a node is allowed to change its
neighbors as we analyzed in Section 2. To further analyze how nodes are con-
nected over time, we counted the numbers of neighbors of active nodes during
one week, and plot their distribution in Figure 7. The blue dots represent the dis-
tribution of outgoing neighbors of the nodes. The results indicate that a small
fraction of the nodes have more than 1000 outgoing neighbors, while a large
fraction of nodes have less than 100 outgoing neighbors. The red dots represent
the distributions of both incoming and outgoing neighbors. Comparing with the
blue dots, one can see that the node with a large number of outgoing neighbors
are likely to maintain a large number of incoming neighbors as well. More im-
portantly, the small jumps in both blue and red dots indicate that a number of
nodes have not kept the number of connections fixed by default in order to gain
a better connectivity. We point out that this is an unique feature of Monero,
which implies a high network dynamism.
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Fig. 7: Number of outgoing neighbors of heavy, medium, and light nodes.

4.5 Potential threats

Using our tools, one can identify Monero’s network topology and the connectiv-
ity of nodes. An example is shown in Figure 8, which illustrates the neighbors
of a light node (5.X.X.X)'' during the 9-hour monitoring process. Each color
represents a neighbor of the node. It shows that neighbor 1-6 stayed connected
with the node for the entire 9 hours, whereas the connection with neighbor 7 is
dropped around the 8th hour, and a connection with neighbor 11 was established
to replace neighbor 7. Similarly, a connection with neighbor 9 was established
to replace neighbor 8 after 3 hours.

neighbor 11 —
neighbor 10
neighbor 9 _—
neighbor 8|
neighbor 7|
neighbor 6|
neighbor 5
neighbor 4
neighbor 3|

neighbor 2
neighbor 1]

100 200 300 400 500 600
Life time (minutes)

Fig.8: Dynamic neighbor tracking of a light node in 9 hours.

With such knowledge, an attacker can potentially launch different types of
attacks. For example, an attacker could launch a targeted attack by monopoliz-
ing all connections of a victim node [1], selectively partition the network [3], or

1 Hidden IP address to protect the privacy of this light node.

14



even deanonymize transactions by identifying the first node relaying a transac-
tion [5,6].

5 Related work

Previous works studied the network information of leading cryptocurrencies, e.g.,
Bitcoin and Ethereum. Decker and Wattenhofer [16,25] measured the rate of in-
formation propagation between reached nodes in Bitcoin. Relying on the received
messages from reached nodes, interconnections of reached nodes were inferred
in Bitcoin [26,18] to evaluate network properties. To infer whether two reached
nodes are connected in Bitcoin, Grundmann et al. [27] suggested to use double
spent transactions as probing messages, and S. D. Segura et al. [28] suggested
to use orphan transactions. Kim et al. [23] deployed 30 nodes on one machine
to collect network messages to measure the Ethereum network. However, the
node interconnections are difficult to infer in Ethereum, and unreachable nodes
cannot be observed.

Network level attacks have been studied in Bitcoin and Ethereum. Routing
attacks [3,15] are facilitated by the fact that Bitcoin’s protocol makes nodes
exchange messages in plain text during the peer-to-peer communications. This
allows an adversary to partition the network, and delay the dissemination of
messages among nodes. Eclipse attacks, in Bitcoin [1,13] and in Ethereum [2],
pointed out that unsolicited incoming connections can be leveraged by an adver-
sary to continuously send large amount of fake packets to a given node, and fill
the table of its stored IP addresses, forcing it to restart. These attacks demon-
strated that an attacker can monopolize all connections of a targeted node with
high probability. Deanonymization attacks [29,5,6] have been introduced to track
transactions and discover the generator’s IP address. These attacks aim at linking
the IP address of a node with the transactions it created, with the requirement
of monitoring interconnections. Such attacks require, or are facilitated, by an
understanding of the peer-to-peer overlay and topology.

6 Conclusion

In this work, we presented methods we developed to observe Monero’s peer-to-
peer network, and infer its topology. We described how one can deploy Monero
nodes to discover all the nodes participating in the protocol, and their intercon-
nections, using the last_seen timestamps in the peer lists that nodes exchange.
For accuracy, we compared our methods’ results with the ground truth of our
deployed nodes. Our experiments show that even though Monero is a privacy-
preserving cryptocurrency, it is still possible to accurately discover the nodes
in the network and their interconnections. Our analysis provides insights about
Monero’s degree of centralization, and about the privacy and security issues po-
tentially caused by a network topology exposure. As future work, we will conduct
a deeper network-based security and privacy analysis of Monero, based on the
tools provided in this paper.
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