
AV1 Decoder Performance
Optimization and Device Test

23-AUG-2022

Presenter:
Ronald Bultje – Two Orioles
Kaustubh Patankar - ITTIAM

2

Outline

Introduction

AV1 Decoder Optimization – dAV1d

Benchmarking and Analysis

Conclusion

Introduction

4

AV1 – Quick recap

AV1 standard
released in 2018

Netflix, YouTube
started AV1 service

Support for
devices with HW

decoders

Challenge of
complexity across

wide range of
devices

Introduction of
production grade

decoders

Dav1D and Gav1 –
Highly optimized

decoder

AV1 Decoder
Optimization

dAV1d

6

Magic in dav1d’s Inverse Transforms
INLINE Dct8_NEON(Residual *buffer, step, bool transpose);

Dct8TransformLoopRow_neon(Array2dView<Pixel> *frame,

Residual *buffer, tx_size, tx_type)

{

for (int y = 0; y < col_1d_size; y += vector_size)

Dct8_NEON(buffer, vector_size, /*transpose=*/true);

RowShift(buffer);

}

Dct8TransformLoopColumn_neon(Array2dView<Pixel> *frame,

Residual *buffer, tx_size, tx_type)

{

for (int x = 0; x < row_1d_size; x += vector_size)

Dct8_NEON(coefficients[x], row_1d_size,

/*transpose=*/false);

for (y = 0; y < row_1d_size; y++)

residual_add(&pixels[y][x],

coefficients[x + y * row_1d_size]);

}

6

GAV1 IMPLEMENTATION

Gav1 has 2 versions of each inverse 1D

transform with integrated load, transpose, store

and residual_add.

OVERHEAD

● Load/store overhead in 1D transforms

● Load/store overhead in transpose

● Load/store overhead in RowShift()

● Load overhead in residual_add()

● Some overhead can be reduced by inlining,

but that increases binary size

INVERSE TRANSFORMS:

7

Magic in dav1d’s Inverse Transforms

INLINE Dct8_NEON(Residual *buffer, step, bool transpose)

{

[load]

if (transpose) {

[transpose]

}

[actual 1d inverse transform]

if (transpose) {

[transpose]

}

[store]

}

Dct8TransformLoopRow_neon(Array2dView<Pixel> *frame,

Residual *buffer, tx_size, tx_type);

Dct8TransformLoopColumn_neon(Array2dView<Pixel> *frame,

Residual *buffer, tx_size, tx_type);

GAV1 IMPLEMENTATION

Gav1 has 2 versions of each inverse 1D

transform with integrated load, transpose, store

and residual_add.

OVERHEAD

● Load/store overhead in 1D transforms

● Load/store overhead in transpose

● Load/store overhead in RowShift()

● Load overhead in residual_add()

● Some overhead can be reduced by inlining,

but that increases binary size

INVERSE TRANSFORMS:

8

Magic in dav1d’s Inverse Transforms
inv_txfm_add_dct_dct_8x8_8bpc_neon:

mov x15, x30

[dc-only checks]

adr x5, inv_dct_8h_x8_neon

adr x4, inv_dct_8h_x8_neon

b inv_txfm_add_8x8_neon

inv_txfm_add_8x8_neon:

[prologue]

[load coefficients]

blr x4

[8x right-shift-by-one]

[transpose]

blr x5

[write out]

[epilogue]

br x15

inv_dct_8h_x8_neon:

[actual 1d transform]

ret

8

DAV1D IMPLEMENTATION

Dav1d uses transform implementations with a

custom calling ABI which retains the vector

registers as part of the function call interface.

This is only possible because it’s hand-written

assembly (not intrinsics).

OVERHEAD

● Load/store overhead in 1D transforms

● Load/store overhead in transpose

● Load overhead in residual_add()

● Load/store overhead in downshifts

● Custom calling ABI eliminates overhead

without increasing binary size

● dav1d also eliminates the first transpose by

integrating it with the scan table

INVERSE TRANSFORMS:

9

Magic in dav1d’s Inverse Transforms

inv_txfm_add_identity_dct_8x8_8bpc_neon:

mov x15, x30

adr x5, inv_dct_8h_x8_neon

b inv_txfm_identity_add_8x8_neon

inv_txfm_identity_add_8x8_neon:

[prologue]

[load coefficients]

[transpose]

blr x5

[write out]

[epilogue]

br x15

inv_dct_8h_x8_neon:

[actual 1d transform]

ret

DAV1D IMPLEMENTATION

Dav1d uses transform implementations with a

custom calling ABI which retains the vector

registers as part of the function call interface.

This is only possible because it’s hand-written

assembly (not intrinsics).

OVERHEAD

● Special identity implementation merges first

1D identity (which upshifts by 1) and

downshifts (which downshift by 1)

INVERSE TRANSFORMS:

10

Magic in dav1d’s Inverse Transforms

11

other coding tool implementations

DAV1D vs. GAV1
● Loop Restoration: gav1's arm implementation of the selfguided filter is superior (because better cache efficiency)
● CDEF: both implementations have special-case implementations for single filters (when the primary or secondary CDEF filter strength is zero), but gav1’s

secondary-only filter implementation is (unexpectedly) slower than the dual-filter implementation
● Motion Vector Referencing SIMD: both decoders implement SIMD for different parts of the code
● Arithmetic coding: dav1d has hand-written assembly (including SIMD for CDF updates), which gav1 does not have
● Film Grain: both decoders have SIMD, but the Neon film grain is disabled in gav1
● Directional Intra Prediction (z1-3): gav1 has implementations for arm & x86, whereas dav1d only has SIMD implementations for x86

Conclusion: both decoders have some unique implementation ideas, and both can be improved further.

CODING TOOLS:

12

Multi threading

dav1d uses a task-queue design, where each

component in the decoding loop runs as a

generic task with a simple dependency

resolution mechanism:

● entropy tile-sbrow reading

● tile-sbrow reconstruction

● deblock, cdef & loop restoration sbrow in-

loop post-filtering

● film grain sbrow out-loop post-filtering

● multiple frames in parallel

Together, this keeps low number of worker

threads sufficiently busy without relying on

particular bitstream features. Also, it does not

require task-specific worker threads, and is

therefore resource-friendly.

MULTI-THREADING:

Benchmarking and Analysis

14

ON ANDROID ECOSYSTEM

Purpose of AV1 Benchmarking

■ AV1 is the first generation of royalty-free video coding format developed by AOM
• Helps to improve the quality of video delivery

■ There are many service providers in the market already using AV1 for video streaming

■ AV1 real-time playback capability on clients is critical
• Already there is HW decoding support for AV1 on smart TV and set-top boxes

■ Adoption of AV1 into android ecosystem is important and support for HW decoding is still not widely available
and its penetration may take a couple of more years.

■ Wide range of android devices with different chipsets are existing in the market and their processing capability
varies

■ This study helps to know the AV1 SW decoding capability on a sample of devices across the range and enables
the market for wider adoption of AV1 delivery

15

SETUP AND CONFIGURATIONS

Benchmarking Methodology

• Dav1d

• Gav1 Decoders

• Integrated to VLC Player on Android

• aarch32 and aarch64APP

• Real time performance

• CPU loadMetrics

16

MEASUREMENT METHODOLOGY

Benchmarking Methodology

Performance

• Using VLC Benchmarking APP

• Reports number of frames dropped

• Frame drop > 2% is non real time

• ST and MT

CPU Load

• Using “adb top” command

• Validation of SW decoders

• Sampling at 1 sec interval

17

■ Total devices – Android – 61

■ Covering 15 global brands

■ Release year from 2018 to 2020

■ Classification as High, Medium and

Low complexity

• Based on CPU capability

DEVICE SELECTION

Benchmarking Methodology

Category Cortex Version ARM Architecture Clock Frequency

High-end 4xA7x + 4xA5x v8 Any

2xA7x + 6xA55 v8 Any

Mid-range 8xA53 v8 >= 1.8GHz

2xA7x + 6xA53 v8 Any

Low-end 8xA53 v8 < 1.8 GHz

Any v7 Any

18

TEST CLIP, CONFIGURATIONS,

Benchmarking Methodology

■ TOOLS ON – [T-ON]: all AV1 supported coding tools are
used while encoding.

■ TOOLS OFF[8] – [T-OFF]: AV1 coding tools with a poor
trade-off between decoding complexity and compression
efficiency are disabled intelligently (fast-decode option in
SVT-AV1) as described below.
• Enable Motion Field MV prediction only for a well-predictable motion

field
• Enabled tools

o OBMC
o Warp
o Partition depth
o Reduced complexity approximations on Self-Guided filter, CDEF

• Intelligent application of CDEF and Deblocking at super block level

■ Test Clip – AOM – CTC
• Original resolution of 1920x1080
• Down scaled to 5 resolutions – 270p, 360p, 540p, 720p, 1080p
• FPS – 30 and 60
• QP Points – 9

QP Average Bitrate

Tools-On Tools-Off

540p 720p 1080p 540p 720p 1080p

32 2.08 2.99 5.12 2.06 3.02 5.14

43 1.05 1.46 2.47 1.04 1.46 2.46

55 0.45 0.61 1.06 0.45 0.61 1.04

63 0.12 0.17 0.3 0.12 0.16 0.3

19

Standalone Decoder Performance

20

DAV1D WITH SINGLE AND 4 THREADS

Tools ON vs Tools OFF

For 1080p @ QP 32, Number of devices capable
of AV1 real-time playback for dav1d

1. 8 devices for single thread Tools- ON

2. 12 devices for single thread Tools-OFF

3. 36 devices for 4 threads Tools-ON

4. 46 devices for 4 threads Tools-OFF

21

SINGLE AND 4 THREADS – TOOLS OFF CONFIGURATION

Performance of Dav1d and Gav1

For 1080p @ QP 32, Number of devices capable
of AV1 real-time playback for Tools OFF

1. 6 devices for single thread gav1

2. 12 devices for single thread Dav1d

3. 27 devices for 4 threads gav1

4. 46 devices for 4 threads Dav1d

22

DAV1D AND GAV1 – SINGLE AND FOUR THREADS

Average CPU Utilization

Conclusion

24

AV1 is ready to be deployed widely on Android devices with software decoders!

For mid-range to high end Android devices, it is possible to achieve 1080p30 real time playback

It is possible to achieve 720p30 real time playback on most of the Android devices

With Tools Off Configuration, 10-30% of decoder runtime reduction can be achieved than default (Tools On Configuration) with very small quality impact.

Well optimized SW decoders are necessary for AV1 adoption into android ecosystem to improve quality of video delivery

HW AV1 decoders penetration into market may take a couple of years

Summary

